Skip to main content
Log in

Study of the Ultimate Bearing Capacity of Concrete-filled Steel Tube K-Joints

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

To study the ultimate bearing capacity of Concrete-Filled Steel Tube (CFST) K-joints, theoretical analysis and numerical simulation methods were adopted. A finite element model of a K-joint was established and verified with test data. Based on this model, the failure modes of the K-joint were studied. The results showed that the load-displacement curves of CFST K-joints can be divided into three stages: an elastic stage, an elastic-plastic stage and a failure stage. There were two types of failure modes for K-joints: local buckling failure at the connection between a branch pipe and the main pipe due to compression and tearing failure at the connection between a branch pipe and the main pipe due to tensile forces. The factors that influence the ultimate bearing capacity of CFST K-joints were studied, and the results were as follows. The ultimate bearing capacity increased as the radius-thickness ratio of the main pipe, radius-thickness ratio of the branch pipes and gap between branch pipes decreased. Additionally, the ultimate bearing capacity of the CFST K-joints increased with increasing core concrete grade, outer diameter ratio and thickness ratio between the branch pipe and main pipe. As the angle between the axis of the branch pipe and the axis of the main pipe increased, the ultimate bearing capacity initially decreased and then increased. As the axial pressure level in the main pipe increased, the ultimate bearing capacity of the K-joint initially increased and then decreased. A positive linear correlation was observed between the growth coefficient of the ultimate bearing capacity and the scaling factor. Moreover, the ultimate bearing capacity of CFST K-joints can be significantly improved by using core concrete. Finally, formulas for the ultimate bearing capacity of K-joints under different failure modes were proposed, and the results provide a reference for the design of CFST arch bridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cai, S. H. and Jiao, Z. S. (1984). “Behavior and ultimate strength of short concrete–filled steel tubular columns.” Journal of Building Structures, no. 6, pp. 13–29.

    Google Scholar 

  • Chen, B. C. and Huang, W. J. (2007). “Experimental research on ultimate load carrying capacity of truss girders made with circular tubes.” Journal of Building Structures, vol. 28, no. 3, pp. 31–36, DOI: 10.14006/j.jzjgxb.2007.03.005.

    Google Scholar 

  • Chen, B. C. and Huang, W. J. (2009). “Experimental study on ultimate bearing capacity of CFST directly–welded K–joints.” China Civil Engineering Journal, vol. 42, no. 12, pp. 91–98, DOI: 10.15951/j.tmgcxb.2009.12.017.

    Google Scholar 

  • Chen, J., Sun, W. J., and Nie, J. G. (2017a). “Study on spatial effect of concrete–filled steel tubular KK–joints.” Journal of Building Structures, Vol. 38, No. S1, pp. 402–408, DOI: 10.14006/j.jzjgxb.2017.S1.056.

    Google Scholar 

  • Chen, B. C., Wei, J. G., Zhou, J., and Liu, J. P. (2017b). “Application of concrete–filled steel tube arch bridges in China: Current status and prospects.” China Civil Engineering Journal, vol. 50, no. 6, pp. 50–61, DOI: 10.15951/j.tmgcxb.2017.06.006.

    Google Scholar 

  • Han, L. H. (1997). “Theoretical analysis and experimental researches for the behaviors of high strength concrete filled steel tubes subjected to axial compression.” Industrial Construction, vol. 27, no. 11, pp. 39–44, DOI: 10.13204/j.gyjz1997.11.010.

    Google Scholar 

  • Hou, C. and Han, L. H. (2017). “Analytical behavior of CFDST chord to CHS brace composite K–joints.” Journal of Constructional Steel Research, vol. 128, no. 2017, pp. 618–632, DOI: 10.1016/j.jcsr. 2016.09.027.

    Article  Google Scholar 

  • Hou, C., Han, L. H., and Mu, T. M. (2017). “Behaviors of CFDST chord to CHS brace composite K–joints: Experiments.” Journal of Constructional Steel Research, vol. 135, no. 2017, pp. 97–109, DOI: 10.1016/j.jcsr.2017.04.015.

    Article  Google Scholar 

  • Huang, W. J. and Chen, B. C. (2006). “Experimental research on concrete filled steel tube truss girder under bending.” Journal of Architecture and Civil Engineering, vol. 23, no. 1, pp. 29–33, DOI: 10.3321/j.issn:1673–2049.2006.01.005.

    MathSciNet  Google Scholar 

  • Huang, W. J., Fenu, L., Chen, B. C., and Briseghella, B. (2015). “Experimental study on K–joints of concrete–filled steel tubular truss structures.” Journal of Constructional Steel Research, vol. 107, pp. 182–193, DOI: 10.1016/j.jcsr.2015.01.023.

    Article  Google Scholar 

  • Packer, J. A. (1995). “Concrete–filled HSS connections.” Journal of Structural Engineering, vol. 121, no. 3, pp. 458–467, DOI: 10.1061/(ASCE)0733–9445(1995)121:3(458).

    Article  Google Scholar 

  • Sakai. Y., Hosaka, T., Isoe, T., Ichikawa, A., and Mitsuki, K. (2004). “Experiments on concrete filled and reinforced tubular K–joints of truss girder.” Journal of Constructional Steel Research, vol. 60, Nos. 3–5, pp. 683–699, DOI: 10.1016/S0143–974X(03)00136–6.

    Article  Google Scholar 

  • Wang, J. F., Deng, Q., and Xing, W. B. (2018). “Calculation method of the ultimate bearing capacity for circular CFST Truss K–joints.” Progress in Steel Building Structures, vol. 20, no. 2, pp. 44–52, DOI: 10.13969/j.cnki.cn31–1893.2018.02.006.

    Google Scholar 

  • Zheng, L. Q. (2011). “Mechanical property analysis of concrete–filled circular steel tubular K–joints of truss.” Steel Construction, vol. 26, no. 11, pp. 20–23, DOI: 10.3969/j.issn.1007–9963.2011.11.005.

    Google Scholar 

  • Zheng, J. L. (2016). “New development technology of large–span reinforced concrete arch bridges in China.” Journal of Chongqing Jiaotong University (Natural Science), Vol. 35, No. S1, pp. 8–11, DOI: 10.3969/j.issn.1674–0696.2016.sup1.02.

    Google Scholar 

  • Zheng, J. L., Wang, J. J., Mou, T. M., Feng, Z., Han, Y., and Qin, D. Y. (2014). “Feasibility study on design and construction of concrete filled steel tubular arch bridge with a span of 700 m.” Engineering Sciences, vol. 16, no. 8, pp. 33–37, DOI: 10.3969/j.issn.1009–1742.2014.08.004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, K., Wang, H., Pang, J. et al. Study of the Ultimate Bearing Capacity of Concrete-filled Steel Tube K-Joints. KSCE J Civ Eng 23, 2254–2262 (2019). https://doi.org/10.1007/s12205-019-1268-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-019-1268-7

Keywords

Navigation