KSCE Journal of Civil Engineering

, Volume 23, Issue 5, pp 2108–2116 | Cite as

Development of a New Flow-dependent Scheme for Calculating Grain and Form Roughness Coefficients

  • Majid NiazkarEmail author
  • Nasser Talebbeydokhti
  • Seied Hosein Afzali
Hydraulic Engineering


Estimating channel roughness is crucial for whatever engineering plans that have been in mind for any reach under consideration. Not only is resistance coefficient not a measurable quantity, but also various factors affecting on its value make its estimation a challenge. Despite of numerous methods available for roughness estimation, the complexity of some of available iterative schemes particularly with no mechanism for modifying initial guess in each iteration restrain numerical modelers to apply merely outdated resistance equations in practice. In order to improve the estimation of hydraulic resistance, a new straightforward flow-dependent scheme, which is capable of estimating Manning’s coefficient due to grain and form roughness, is introduced. A large data is utilized to calibrate and testify the new scheme. The results of comparing the new scheme with that of different models available in the literature show that it achieves the best estimation results and yields to more than 0.87 and 0.67 for R2, 0.15 and 0.17 for mean absolute relative error for estimating grain and form Manning’s coefficients, respectively. This comparison demonstrates that the results achieved by the new scheme are acceptably accurate in favor of roughness estimation.


open channel flow resistance equation grain roughness form roughness Manning’s coefficient and dimensionless roughness curves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afzali, S. H., Darabi, A., and Niazkar, M. (2016). “Steel frame optimal design using MHBMO algorithm.” International Journal of Steel Structures, Vol. 16, No. 2, pp. 455–465, DOI: 10.1007/s13296-016-6016-y.CrossRefGoogle Scholar
  2. Afzalimehr, H., Singh, V. P., and Najafabadi, E. F. (2009). “Determination of form friction factor.” Journal of Hydrologic Engineering, Vol. 15, No. 3, pp. 237–243, DOI: 10.1061/(ASCE)HE.1943-5584.0000175.CrossRefGoogle Scholar
  3. Banerjee, S., Naik, B., Singh, P., and Khatua, K. K. (2018). “Flow resistance in gravel bed open channel flows case: Intense transport condition.” ISH Journal of Hydraulic Engineering, pp. 1–12, DOI: 10.1080/09715010.2017.1422189.Google Scholar
  4. Bjerklie, D. M., Dingman, S. L., and Bolster, C. H. (2005). “Comparison of constitutive flow resistance equations based on the Manning and Chezy equations applied to natural rivers.” Water Resources Research, Vol. 41, No. 11, W11502, DOI: 10.1029/2004WR003776.Google Scholar
  5. Brownlie, W. R. (1981). Prediction of flow depth and sediment discharge in open channels, Report No. KH-R-43A. W. M. Kech Laboratory of Hydraulics and Water Resources. California Institute of Technology.Google Scholar
  6. Camenen, B., Bayram, A., and Larson, M. (2006). “Equivalent roughness height for plane bed under steady flow.” Journal of Hydraulic Engineering, ASCE, Vol. 132, No. 11, pp. 1146–1158, DOI: 10.1061/(ASCE)0733-9429(2006)132:11(1146).CrossRefGoogle Scholar
  7. Church, M. and Rood, R. (1983). Catalogue of alluvial river channel regime data, The University of British Columbia, Vancouver, BC, Canada.Google Scholar
  8. Einstein, H. A. (1942). “Formulas for the transportation of bed load.” Transactions, ASCE, Vol. 107, pp. 561–573.Google Scholar
  9. Engelund, F. (1966). “Hydraulic resistance of alluvial streams.” Journal of the Hydraulic Division, ASCE, Vol. 92, No. HY2, pp. 315–326.Google Scholar
  10. Ferguson, R. (2010). “Time to abandon the Manning equation?” Earth Surface Processes and Landforms, Vol. 35, pp. 1873–1876, DOI: 10.1002/esp.2091.CrossRefGoogle Scholar
  11. Ferguson, R. (2013). “Reach-scale flow resistance.” Treatise on Geomorphology, J. Shroder and E. Wohl, Ed., Vol. 9, Academic Press, San Diego, CA, USA, pp. 50–68.CrossRefGoogle Scholar
  12. Garcia, M. H. (2008). Sedimentation Engineering: Processes, measurements, modeling, and practice. ASCE publisher, p. 1132.CrossRefGoogle Scholar
  13. Hager, W. H. and Giudice, G. D. (2001). “Discussion of “Movable bed roughness in alluvial rivers”.” Journal of Hydraulic Engineering ASCE, Vol. 127, No. 7, pp. 627–628, DOI: 10.1061/(ASCE)0733-9429(2001)127:7(627).CrossRefGoogle Scholar
  14. Heritage, G. L., Moon, B. P., Broadhurst, L. J., and James, C. S. (2004). “The frictional resistance characteristics of a bedrock-influenced river channel.” Earth Surface Processes and Landforms, Vol. 29, pp. 611–627, DOI: 10.1002/esp.1057.CrossRefGoogle Scholar
  15. Higginson, N. N. J. and Johnston, H. T. (1988). “Estimation of friction factor in natural streams.” River Regime, W. R. White, Ed., John Wiley & Sons, Inc., New York, NY, USA, pp. 251–266.Google Scholar
  16. Kitsikoudis, V., Sidiropoulos, E., Iliadis, L., and Hrissanthou, V. (2015). “A machine learning approach for the mean flow velocity prediction in alluvial channels.” Water Resources Management, Vol. 29, No. 12, pp. 4379–4395, DOI: 10.1007/s11269-015-1065-0.CrossRefGoogle Scholar
  17. Lamb, M. P., Dietrich, W. E., and Venditti, J. G. (2008). “Is the critical Shields stress for incipient sediment dependent on channel-bed slope?” Journal of Geophysical Research, Vol. 113, F02008, DOI: 10.1029/2007JF000831.Google Scholar
  18. McGahey, C., Knight, D. W., and Samuels, P. G. (2009). “Advice, methods and tools for estimating channel roughness.” Proceedings of the Institution of Civil Engineers, Water Management, Vol. 162, No.WM6, pp. 353–362, DOI: 10.1680/wama.2009.162.6.353.CrossRefGoogle Scholar
  19. McKay S. K. and Fischenich J. C. (2011). Robust prediction of hydraulic roughness, US Army Engineer Research and Development Center, Vicksburg, MS, USA.Google Scholar
  20. Motaman, F., Rakhshandehroo, G. R., Hashemi, M. R., and Niazkar, M. (2018). “Application of RBF-DQ method to time-dependent analysis of unsaturated seepage.” Transport in Porous Media, Vol. 125, No. 3, pp. 543–564, DOI: 10.1007/s11242-018-1138-7.MathSciNetCrossRefGoogle Scholar
  21. Motamedi, A., Afzalimehr, H., and Singh, V. P. (2009). “Estimation of friction factor in open channels.” Journal of Hydrologic Engineering, Vol. 15, No. 3, pp. 249–254, DOI: 10.1061/(ASCE)HE.1943-5584.0000180.CrossRefGoogle Scholar
  22. Niazkar, M. and Afzali, S. H. (2014). “Assessment of modified honey bee mating optimization for parameter estimation of nonlinear muskingum models.” Journal of Hydrologic Engineering, Vol. 20, No. 4, 04014055, DOI: 10.1061/(ASCE)HE.1943-5584.0001028.CrossRefGoogle Scholar
  23. Niazkar, M. and Afzali, S. H. (2015). “Optimum design of lined channel sections.” Water Resources Management, Vol. 29, No. 6, pp. 1921–1932, DOI: 10.1007/s11269-015-0919-9.CrossRefGoogle Scholar
  24. Niazkar, M. and Afzali, S. H. (2016). “Application of new hybrid optimization technique for parameter estimation of new improved version of muskingum model.” Water Resources Management, Vol. 30, No. 13, pp. 4713–4730, DOI: 10.1007/s11269-016-1449-9.CrossRefGoogle Scholar
  25. Niazkar, M. and Afzali, S. H. (2017a). “New nonlinear variable-parameter muskingum models.” KSCE Journal of Civil Engineering, KSCE, Vol. 21, No. 7, pp. 2958–2967, DOI: 10.1007/s12205-017-0652-4.CrossRefGoogle Scholar
  26. Niazkar, M. and Afzali, S. H. (2017b). “Parameter estimation of an improved nonlinear Muskingum model using a new hybrid method.” Hydrology Research, Vol. 48, No. 4, pp. 1253–1267, Vol. 57, No. 3, pp. 1741–1747, DOI: 10.2166/nh.2016.089.CrossRefGoogle Scholar
  27. Niazkar, M. and Afzali, S. H. (2017c). “Application of new hybrid method in developing a new semicircular-weir discharge model.” Alexandria Engineering Journal, Vol. 57, No. 3, pp. 1741–1747, DOI: 10.1016/j.aej.2017.05.004.CrossRefGoogle Scholar
  28. Niazkar, M. and Afzali, S. H. (2018a). “Closure to assessment of modified honey bee mating optimization for parameter estimation of nonlinear muskingum models.” Journal of Hydrologic Engineering, Vol. 23, No. 4, 07018003, DOI: 10.1061/(ASCE)HE.1943-5584.0001602.CrossRefGoogle Scholar
  29. Niazkar, M. and Afzali, S. H. (2018b). “Developing a new accuracyimproved model for estimating scour depth around piers using a hybrid method.” Iranian Journal of Science and Technology, Transactions of Civil Engineering, pp. 1–11, DOI: 10.1007/s40996-018-0129-9.Google Scholar
  30. Niazkar, M., Rakhshandehroo, G., and Afzali, S. H. (2018a). “Deriving explicit equations for optimum design of a circular channel incorporating a variable roughness.” Iranian Journal of Science and Technology, Transactions of Civil Engineering, Vol. 42, No. 2, pp. 133–142, DOI: 10.1007/s40996-017-0091-y.CrossRefGoogle Scholar
  31. Niazkar, M., Talebbeydokhti, N., and Afzali, S. H. (2018b). “Novel grain and form roughness estimator scheme incorporating artificial intelligence models.” Water Resources Management, DOI: 10.1007/s11269-018-2141-z.Google Scholar
  32. Recking, A. (2006). An experimental study of grain sorting effects on bedload, Report No. 2006-ISAL-00113, Institut National des Sciences Appliquées de Lyon France.Google Scholar
  33. Recking A., Frey P., Paquier A., Belleudy P., and Champagne J. Y. (2008). “Feedback between bed load transport and flow resistance in gravel and cobble bed rivers.” Water Resources Research, Vol. 44, No. 5, W05412, DOI: 10.1029/2007WR006219.CrossRefGoogle Scholar
  34. Rickenmann, D. and Recking, A. (2011). “Evaluation of flow resistance in gravel-bed rivers through a large field data set.” Water Resources Research, Vol. 47, No. 7, W07538, DOI: 10.1029/2010WR009793.CrossRefGoogle Scholar
  35. Singh, P. K., Banerjee, S., Naik, B., Kumar, A., and Khatua, K. K. (2018). “Lateral distribution of depth average velocity & boundary shear stress in a gravel bed open channel flow.” ISH Journal of Hydraulic Engineering, pp. 1–15, DOI: 10.1080/09715010.2018.1505562.Google Scholar
  36. van Rijn, L. C. (1984). “Sediment transport. Part III: Bed forms and alluvial roughness.” Journal of Hydraulic Engineering ASCE, Vol. 110, No. 12, pp. 1733–1754, DOI: 10.1061/(ASCE)0733-9429(1984)110:12(1733).CrossRefGoogle Scholar
  37. Wu, W. and Wang, S. S. (1999). “Movable bed roughness in alluvial rivers.” Journal of Hydraulic Engineering ASCE, Vol. 125, No. 12, pp. 1309–1312, DOI: 10.1061/(ASCE)0733-9429(1999)125:12(1309).CrossRefGoogle Scholar
  38. Yen, B. C. (1991). Hydraulic resistance in open channels. in Channel Flow Resistance: Centennial of Manning’s Formula, B. C. Yen, ed., Water Resource Publications, Highlands Ranch, Colo., pp. 1–135.Google Scholar
  39. Yu, G. and Lim, S. Y. (2003). “Modified Manning formula for flow in alluvial channels with sand-beds.” Journal of Hydraulic Research, Vol. 41, No. 6, pp. 597–608, DOI: 10.1080/00221680309506892.CrossRefGoogle Scholar
  40. Zhiyao, S., Tingting, W., Fumin, X., and Ruijie, L. (2008). “A simple formula for predicting settling velocity of sediment particles.” Water Science and Engineering, Vol. 1, No. 1, pp. 37–43, DOI: 10.1016/S1674-2370(15)30017-X.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers 2019

Authors and Affiliations

  • Majid Niazkar
    • 1
    Email author
  • Nasser Talebbeydokhti
    • 1
  • Seied Hosein Afzali
    • 1
  1. 1.Dept. of Civil and Environmental Engineering, School of EngineeringShiraz UniversityShirazIran

Personalised recommendations