KSCE Journal of Civil Engineering

, Volume 23, Issue 5, pp 2065–2073 | Cite as

Representation of Volume Change for Bentonite in Saline Solution based on Modified Effective Stress

  • Xiaoyue Li
  • Chaoyang Li
  • Yongfu XuEmail author
Geotechnical Engineering


Bentonite is usually selected as the buffering barrier material for high-level nuclear waste repository due to its characteristics of high expansibility and low permeability, yet the swelling properties are influenced by the saline solution existing in the fissures of surrounding rocks. Quantifying the effects of saline solution concentration on the swelling property of compacted bentonite is significant for assessing the security of engineering barrier used to dispose high-level radioactive waste. In this study, the modified effective stress incorporating with osmotic suction generated from saline solution is proposed to depict the volume changes for bentonite in saline solution with different concentrations by a unique equation. The osmotic suctions are calculated with the simplified Debye-Hückel equation and the results are validated by comparing with the experimental data in other literatures. The published experimental data prove the uniform relationship between the volume change and the modified effective stress in saline solution with different concentrations. Therefore, the quantitative predictions of volume change of bentonite in saline solution with different concentrations are presented using the modified effective stress concept.


bentonite fractals osmotic suction saline solution modified effective stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alawaji, H. A. (1999). “Swell and compressibility characteristics of sand-bentonite mixtures inundated with liquids.” Appl. Clay Sci., Vol. 15, No. 3, pp. 411–430, DOI: 10.1016/S0169-1317(99)00033-2.CrossRefGoogle Scholar
  2. Anvir, D. and Jaroniec, M. (1989). “An isotherm equation for adsorption on fractal surface of heterogeneous porous materials.” Langmuir, Vol. 5, No. 6, pp. 1431–1433, DOI: 10.1021/la00090a032.CrossRefGoogle Scholar
  3. Apelblat, A., Dov, M., Wisniak, J., and Zabicky, J. (1995). “The vapour pressure of water over saturated aqueous solutions of malic, tartaric, and citric acids, at temperatures from 288 K to 323 K.” The Journal of Chemical Thermodynamics, Vol. 27, No. 1, pp. 35–41, DOI: 10.1006/jcht.1995.0004.CrossRefGoogle Scholar
  4. Barbour, S. and Fredlund, D. G. (1989). “Mechanisms of osmotic flow and volume change in clay soils.” Can. Geotech. J., Vol. 26, No. 4, pp. 551–562, DOI: 10.1139/t89-068.CrossRefGoogle Scholar
  5. Calvello, M., Lasco, M., Vassallo, R., and Di Miao, C. (2005). “Compressibility and residual shear strength of smectitic clays: influence of pore aqueous solutions and organic solvents.” Rivista Italiana Di Geotechnica, Vol. 1, No. 1, pp. 33–46.Google Scholar
  6. Celies, R., Cornejo, J., and Hermosin, M. C. (1996). “Surface fractal dimensions of synthetic clay-hydrous iron oxide associations from nitrogen adsorption isotherms and mercury porosimetry.” Clay Miner, Vol. 31, No. 3, pp. 55–363, DOI: 10.1180/claymin.1996.031.3.06.Google Scholar
  7. Chen, C. C. and Evans, L. B. A. (1986). “A local composition model for the excess Gibbs energy of aqueous electrolyte systems.” AIChE J., Vol. 32, No. 3, pp. 444–454, DOI: 10.1002/aic.690320311.CrossRefGoogle Scholar
  8. Clarke, E. C. W. and Glew, D. N. (1985). “Evaluation of thermodynamic function for aqueous sodium chloride from equilibrium and calorimetric measurements below 154°C.” Journal of Physical and Chemical Reference Data, Vol. 18, No. 1, pp. 489–610, DOI: 10.1063/1.555824.CrossRefGoogle Scholar
  9. De Bruyn, C., Collins, C., and Williams, A. (1957). “The specific surface, water affinity and expansive potential of clays.” Clay Minerals, Vol. 3, No. 17, pp. 120–128, DOI: 10.1180/claymin.1957.003.17.02.CrossRefGoogle Scholar
  10. Di Maio, C., Santoil, L., and Schiavone, P. (2004). “Volume change behavior of clays: the influence of mineral composition, pore fluid composition and stress state.” Mech. Mater, Vol. 36, No. 5, pp. 435–451, DOI: 10.1016/S0167-6636(03)00070-X.CrossRefGoogle Scholar
  11. Dutta, J. and Mishra, A. K. (2016). “Consolidation behaviour of bentonites in the presence of salt solutions.” Appl. Clay Sci., Vol. 120, No. 8, pp. 61–69, DOI: 10.1016/j.clay.2015.12.001.CrossRefGoogle Scholar
  12. Fernández, D. P., Goodwin, A. R. H., Lemmon, E. W., Levelt Sengers, J. M. H., and Williams, R. C. (1997). “A formulation for the Static Permittivity of Water and Steam at Temperature from 238K to 873K at Pressures up to 1200 MPa, Including Derivatives and Debye-Hückel Coefficients.” Journal of Physical and Chemical Reference Data, Vol. 26, No. 4, pp. 1125–1166, DOI: 10.1063/1.555997.CrossRefGoogle Scholar
  13. Goldberg, R. N. and Nuttall, R. L. (1978). “Evaluated activity and osmotic coefficients for aqueous solutions: The alkaline earth metal halides.” J. Phys. Chem., Vol. 7, No. 1, pp. 263–310, DOI: 10.1063/1.555569.Google Scholar
  14. Gray, M. N., Cheung, S. C. H., and Dixon, D. A. (1984). “The influence of sand content on swelling pressure and structure developed in statically compacted Na-bentonite.” Whiteshell Nuclear Research Establishment, Atomic Energy of Canada Ltd., Vol. 782, Pinawa, Manitoba, pp. 1–24.Google Scholar
  15. Hamer, W. J. and Wu, Y. C. (1972). “Osmotic coefficient and mean activity coefficients of univalent electrolytes in water at 25°C.” Journal of Physical and Chemical Reference Data, Vol. 1, No. 4, pp. 1047–1099, DOI: 10.1063/1.3253108.CrossRefGoogle Scholar
  16. Mesri, G. and Olson, R. E. (1971). “Consolidation Characteristic of Montmorillonite.” Géotechnique, Vol. 21, No. 4, pp. 341–352, DOI: 10.1680/geot.1971.21.4.341.CrossRefGoogle Scholar
  17. Miller, D. J. and Nelson, J. D. (2006). “Osmotic suction in unsaturated soil mechanics.” Proceedings of the Fourth International Conference on Unsaturated Soil, AZ, USA, pp. 1382–1343.Google Scholar
  18. Mohammed, T. Z. M. and Jaber, J. S. (2000). “Measurement and correlation of osmotic coefficients and evaluation of vapor pressure for solutions of CaCl2 and Ca(NO3)2 in ethanol at 298K.” Fluid Phase Equilibria, Vol. 172, No. 2, pp. 221–235, DOI: 10.1016/S0378-3812(00)00372-1.CrossRefGoogle Scholar
  19. Mollins, L. H., Stewart, D. I., and Cousens, T. W. (1996). “Predicting the properties of bentonite-sand mixtures.” Clay Miner., Vol. 31, No. 2, pp. 243–252, DOI: 10.1180/claymin.1996.031.2.10.CrossRefGoogle Scholar
  20. Pfeifer, P., Obert, M., and Cole, M. W. (1989). “Fractal BET and FHH theories of adsorption: A comparative study.” Proceeding of the Royal Society of London. Series A, Mathematical and Physical Science, Vol. 423, No. 1864, pp. 169–188, DOI: 10.1098/rspa.1989.0049.CrossRefGoogle Scholar
  21. Pitzer, K. S. and Kim, J. J. (1974). “Thermodynamics of electrolytes. iv. activity and osmotic coefficients for mixed electrolytes.” Journal of the American Chemical Society, Vol. 96, No. 18, pp. 5701–5707, DOI: 10.1021/ja00825a004.CrossRefGoogle Scholar
  22. Pitzer, K. S. and Mayorga, G. (1973). “Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent.” The Journal of Physical Chemistry, Vol. 77, No. 19, pp. 2300–2308, DOI: 10.1142/9789812795960_0058.CrossRefGoogle Scholar
  23. Pitzer, K. S. and Mayorga, G. (1974). “Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2–2 electrolytes.” Journal of Solution Chemistry, Vol. 3, No. 7, pp. 534–546, DOI: 10.1007/BF00648138.CrossRefGoogle Scholar
  24. Pusch, R. and Yong, R. (2003). “Water saturation and retention of hydrophilic clay buffer microstructural aspects.” Appl. Clay Sci., Vol. 23, pp. 61–68, DOI: 10.1016/S0169-1317(03)00087-5.CrossRefGoogle Scholar
  25. Rao, S. M. and Thyagaraj, T. (2007). “Swell-compression behavior of compacted clays under chemical gradients.” Can. Geotech. J, Vol. 44, No. 5, pp. 520–532, DOI: 10.1139/T07-002.CrossRefGoogle Scholar
  26. SKB (2004). Interim process report for the safety assessment SR-Can, Report 04–33, Swedish Nuclear Fuel and Waste Management Co. Stockholm, Sweden.Google Scholar
  27. Sposito, G., Holtzclaw, K. M., Charlet, L., Jouany, C., and Page, A. L. (1983). “Sodium-calcium and sodium-magnesium exchange on Wyoming bentonite in perchlorate and chloride background ionic media.” Soil Sci. Soc. of America J., Vol. 47, No. 1, pp. 51–56, DOI: 10.2136/sssaj1983.03615995004700010010x.CrossRefGoogle Scholar
  28. Studds, P. G., Stewart, D. I., and Cousens, T. W. (1998). “The effects of salt solutions on the properties of bentonite-sand mixtures.” Clay Miner., Vol. 33, No. 4, pp. 651–661, DOI: 10.1180/claymin.1998.033.4.12.CrossRefGoogle Scholar
  29. Su, K. and Patrick, L. (2006). “Andra’s feasibility study on deep geological disposal of high-level long-lived radioactive waste.” Chinese Journal of Rock Mechanics and Engineering, Vol. 25, No. 4, pp. 813–824.Google Scholar
  30. Tripathy, S., Bag, R., and Thomas, H. R. (2013). “Effect of Stern-layer on the compressibility behaviour of bentonites.” Acta Geotech., Vol. 9, pp.1097-1109, DOI: 10.1007/s11440-013-0222-y.Google Scholar
  31. Verwey, E. J. W. (1948). “Theory of the stability of lyophobic colloids.” J. Phys. Chem., Vol. 51, No. 3, pp. 631–636.CrossRefGoogle Scholar
  32. Wijmans, J. G. and Baker, R. W. (1995). “The solution-diffusion model: a review.” J. Memb. Sci., Vol. 107, No. 1, pp. 1–21, DOI: 10.1016/0376-7388(95)00102-I.CrossRefGoogle Scholar
  33. Xiang, G. S., Jiang, H., and Xu, Y. F. (2015). “Fractal calculation method for swelling deformation of compacted bentonite.” Rook and Soil Mechanics, Vol. 36, No. 4, pp. 1009–1014, DOI: 10.16285/j.rsm.2015.04.014.Google Scholar
  34. Xiang, G. S., Xu, Y. F., and Xie, S. H. (2016). “Effects on bentonite microstructure by salt solution.” Journal of Southeast University (Natural Science Edition), Vol. 46, Sup, pp. 230–234, DOI: 10.3969/j.issn.1001-0505.2016.S1.040.Google Scholar
  35. Xu, Y. F., Matsuoka, H., and Sun, D. A. (2003). “Swelling characteristics of fractal textured bentonite and its mixtures.” Appl. Clay Sci., Vol. 22, No. 4, pp. 197–209, DOI: 10.1016/S0169-1317(02)00159-X.CrossRefGoogle Scholar
  36. Xu, Y. F., Xiang, G. S., Jiang, H., Chen, T., and Chu, F. F. (2014). “Role of osmotic suction in volume change of clays in salt solution.” Appl. Clay Sci., Vol. 101, No. 45, pp. 354–361, DOI: 10.1016/j.clay.2014.09.006.CrossRefGoogle Scholar
  37. Ye, W. M., Zhang, F., Chen, B., Chen, Y. G., Wang, Q., and Cui, Y. J. (2014). “Effects of salt solutions on the hydro-mechanical behavior of compacted GMZ01 bentonite.” Environ. Earth. Sci., Vol. 72, No. 7, pp. 2621–2630, DOI: 10.1007/s12665-014-3169-x.CrossRefGoogle Scholar
  38. Yong, R. N. and Mohamed, A. M. O. (1992). “A study of particle interaction energies in wetting of unsaturated expansive clays.” Can. Geotech. J., Vol. 29, No. 6, pp. 1060–1070, DOI: 10.1139/t92-123.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers 2019

Authors and Affiliations

  1. 1.School of Naval Architecture, Ocean and Civil EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations