Estimation of Soil Hydraulic Properties of Basin Loukkos (Morocco) by Inverse Modeling

  • Hachimi Mustapha
  • Maslouhi AbdellatifEmail author
  • Tamoh Karim
  • Qanza Hamid
Water Resources and Hydrologic Engineering


Management of groundwater resources is very important for economic development in arid and semi-arid lands. Unsaturated zone plays an important role in the fate of pollutants in the soil. Modeling of water flow in the vadose zone uses methods and techniques of soil physics. To describe and predict the behavior of water and solutes in unsaturated soil, knowledge of the soil hydraulic parameters is essential. The aim of this work is to evaluate the soil hydraulic parameters by direct and inverse methods from field measurements of cumulative infiltration and water contents. The inverse approach used here combined the numerical solution of the Richards equation two-dimensional with a Levenberg-Marquardt algorithm of optimization. Field experiments, using the disc infiltrometer, were conducted out in the Rmel area, sandy soil, in the Loukkos Basin located in northern Morocco. In this study, numerical and experimental results show that the simulated values are much closer to the measured values with a high correlation (R2 ≈ 0.92, RMSE ≈ 0.146). Indicating that the model used here is efficient to estimate the soil hydraulic parameters by inverse modeling. Furthermore, the sensitivity analysis showed that the saturated conductivity (Ks) is sensitive to estimate with respect to other parameters.


infiltration 2D inverse modeling vadose zone water content 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angulo-Jaramillo, R., Vandervaere, J. P., Roulier, S., Thony, J. L., Gaudet, J. P., and Vauclin, M. (2000). “Field measurement of soil surface hydraulic properties by disc and ring infiltrometers: A review and recent developments.” Soil and Tillage Research, Vol. 55, Nos. 1–2, pp. 1–29, DOI: 10.1016/s0167-1987(00)00098-2.CrossRefGoogle Scholar
  2. Bagarello, V. and Iovino, M. (2012). “Testing the BEST procedure to estimate the soil water retention curve.” Geoderma, Vol. 187, pp. 67–76, DOI: 10.1016/j.geoderma.2012.04.006.CrossRefGoogle Scholar
  3. Barati, R. (2013). “Application of excel solver for parameter estimation of the nonlinear Muskingum models.” KSCE Journal of Civil Engineering, Vol. 17, No. 5, pp. 1139–1148, DOI 10.1007/s12205-013-0037-2.CrossRefGoogle Scholar
  4. Beydoun H. (2005). Parameter estimation for unsaturated flow in porous media: Experimental approach and modeling, PhD Thesis, University of Strasbourg, Strasbourg, France.Google Scholar
  5. Carsel, R. F. and Parrish, R. S. (1988). “Developing joint probability distributions of soil water retention characteristics.” Water Resources Research, Vol. 24, No. 5, pp. 755–769, DOI: 10.1029/wr024i005p00755.CrossRefGoogle Scholar
  6. Coppola, A., Basile, A., Comegna, A., and Lamaddalena, N. (2009). “Monte Carlo analysis of field water flow comparing uni-and bimodal effective hydraulic parameters for structured soil.” Journal of Contaminant Hydrology, Vol. 104, Nos. 1–4, pp. 153–165, DOI: 10.1016/j.jconhyd.2008.09.007.CrossRefGoogle Scholar
  7. Hachimi M. and Maslouhi, A. (2016). “Hydrodynamic characterization using the disc infiltrometer of Loukkos soils (Morocco).” Journal of Materials and Environmental Science, Vol. 7, No. 9, pp. 3300–3312.Google Scholar
  8. Haddout, S., Igouzal, M., and Maslouhi, A. (2016). “Analytical and numerical study of the salinity intrusion in the Sebou river estuary (Morocco)–effect of the “Super Blood Moon”(total lunar eclipse) of 2015.” Hydrology and Earth System Sciences, Vol. 20, No. 9, pp. 3923, DOI: 10.5194/hess-20-3923-2016.CrossRefGoogle Scholar
  9. Haverkamp, R., Ross, P. J., Smettem, K. R. J., and Parlange, J. Y. (1994). “Three-dimensional analysis of infiltration from the disc infiltrometer: 2. Physically based infiltration equation.” Water Resources Research, Vol. 30, No. 11, pp. 2931–2935, DOI: 10.1029/94wr01788.CrossRefGoogle Scholar
  10. Hill, M. C. (1998). Methods and guidelines for effective model calibration, US Geological Survey Water-Resources Investigations Rep. 98–4005, US Geological Survey, Reston, VA, USA, DOI: 10.1061/40517 (2000)18.Google Scholar
  11. Hmimou, A., Maslouhi, A., Tamoh, K., and Candela, L. (2014). “Experimental monitoring and numerical study of pesticide (carbofuran) transfer in an agricultural soil at a field site.” Comptes Rendus Geoscience, Vol. 346, Nos. 9–10, pp. 255–261, DOI: 10.1016/j.crte.2014.03.003.CrossRefGoogle Scholar
  12. Hopmans, J. W., Šimunek, J., Romano, N., and Durner, W. (2002). “Simultaneous determination of water transmission parameters and retention properties: Inverse method.” Methods of Soil Analysis, Part 4, Physical Methods, J. H. Dane and G. C. Topp, Co-Eds, Vol. 5, Soil Science Society of America.Google Scholar
  13. Ibnoussina, M. H., El Haroui, M., and Maslouhi, A. (2006). “Experimentation and modeling of nitrate nitrogen leaching in sandy soil.” Comptes Rendus Geoscience, Vol. 338, No. 11, 787–794, DOI: 10.1016/j.crte.2006.07.002.CrossRefGoogle Scholar
  14. Jejurkar, C. L. and Rajurkar, M. P. (2015). “An investigational approach for the modelling of infiltration process in a clay soil.” KSCE Journal of Civil Engineering, Vol. 19, No. 6, pp. 1916–1921, DOI: 10.1007/s12205-014-0149-3.CrossRefGoogle Scholar
  15. Kim, T. and Sheng, Y. P. (2010). “Estimation of water quality model parameters.” KSCE Journal of Civil Engineering, Vol. 14, No. 3, pp. 421–437, DOI: 10.1007/s12205-010-0421-0.CrossRefGoogle Scholar
  16. Kool, J. B., Parker, J. C., and Van Genuchten, M. T. (1987). “Parameter estimation for unsaturated flow and transport models -A review.” Journal of hydrology, Vol. 91, Nos. 3–4, pp. 255–293, DOI: 10.1016/0022-1694(87)90207-1.CrossRefGoogle Scholar
  17. Le Bourgeois, O., Bouvier, C., Brunet, P., and Ayral, P. A. (2016). “Inverse modeling of soil water content to estimate the hydraulic properties of a shallow soil and the associated weathered bedrock.” Journal of Hydrology, Vol. 541, pp. 116–126, DOI: 10.1016/j.jhydrol.2016.01.067.CrossRefGoogle Scholar
  18. Marquardt, D. W. (1963). “An algorithm for least-squares estimation of nonlinear parameters.” Journal of the Society for Industrial and Applied Mathematics, Vol. 11, No. 2, pp. 431–441, DOI: 10.1137/0111030.MathSciNetCrossRefzbMATHGoogle Scholar
  19. Mubarak, I., Mailhol, J. C., Angulo-Jaramillo, R., Ruelle, P., Boivin, P., and Khaledian, M. (2009). “Temporal variability in soil hydraulic properties under drip irrigation.” Geoderma, Vol. 150, Nos. 1–2, pp. 158–165, DOI: 10.1016/j.geoderma.2009.01.022.CrossRefGoogle Scholar
  20. Musy, A. and Soutter, M. (1991). Physique du sol, Vol. 6, PPUR presses polytechniques.Google Scholar
  21. Nash, J. E. and Sutcliffe, J. V. (1970). “River flow forecasting through conceptual models part I—A discussion of principles.” Journal of Hydrology, Vol. 10, No. 3, pp. 282–290, DOI: 10.1016/0022-1694(70)90255-6.CrossRefGoogle Scholar
  22. ORMVAL (2001). Soil pedology of loukkos: Rmel site and M'risa site, The Regional Office for Agricultural Development of Loukkos (ORMVAL).Google Scholar
  23. Perroux, K. M. and White, I. (1988). “Designs for disc permeameters 1.” Soil Science Society of America Journal, Vol. 52, No. 5, pp. 1205–1215, DOI: 10.2136/sssaj1988.03615995005200050001x.CrossRefGoogle Scholar
  24. Philip, J. R. (1957a). “The theory of infiltration: 1. The infiltration equation and its solution.” Soil Science, Vol. 83, No. 5, pp. 345–358, DOI: 10.1097/00010694-195705000-00002.CrossRefGoogle Scholar
  25. Philip, J. R. (1957b). “The theory of infiltration: 4. Sorptivity and algebraic cannot pretend to be a complete representation of the infiltration equations.” Soil Science, Vol. 84, pp. 257–264, DOI: 10.1097/00010694-195709000-00010.CrossRefGoogle Scholar
  26. Qanza, H., Maslouhi, A., and Abboudi, S. (2016). “Experience of inverse modeling for estimating hydraulic parameters of unsaturated soils.” Russian Meteorology and Hydrology, Vol. 41, Nos. 11–12, pp. 779–788, DOI: 10.3103/s1068373916110066.CrossRefGoogle Scholar
  27. Quadri, M. B. (1993). Multi-disc infiltrometry for the hydro-dispersive characterization of unsaturated soils: modeling of the transfers and applications. PhD Thesis, University of Grenoble.Google Scholar
  28. Quadri, M. B., Angulo-Jaramillo, R., Vauclin, M., Clothier, B. E., and Green, S. R. (1994). “Axisymmetric transport of water and solute underneath a disk permeameter: Experiments and numerical model.” Soil Science Society of America Journal, Vol. 58, No. 3, pp. 696–703, DOI: 10.2136/sssaj1994.03615995005800030009x.CrossRefGoogle Scholar
  29. Ramos, T. B., Goncalves, M. C., Martins, J. C., Van Genuchten, M. T., and Pires, F. P. (2006). “Estimation of soil hydraulic properties from numerical inversion of tension disk infiltrometer data.” Vadose Zone Journal, Vol. 5, No. 2, pp. 684–696, DOI: 10.2136/vzj2005.0076.CrossRefGoogle Scholar
  30. Rezaei, M., Seuntjens, P., Joris, I., Boënne, W., Van Hoey, S., Campling, P., and Cornelis, W. M. (2016). “Sensitivity of water stress in a twolayered sandy grassland soil to variations in groundwater depth and soil hydraulic parameters.” Hydrology and Earth System Sciences, Vol. 20, No. 1, pp. 487–503, DOI: 10.5194/hessd-12-6881-2015.CrossRefGoogle Scholar
  31. Saâdi, Z. and Maslouhi, A. (2003). “Modeling nitrogen dynamics in unsaturated soils for evaluating nitrate contamination of the Mnasra groundwater.” Advances in Environmental Research, Vol. 7, No. 4, pp. 803–823, DOI: 10.1016/s1093-0191(02)00055-2.CrossRefGoogle Scholar
  32. Šimunek, J. and Genuchten, M. V. (1996). “Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion.” Water Resources Research, Vol. 32, No. 9, pp. 2683–2696, DOI: 10.1029/96wr01525.CrossRefGoogle Scholar
  33. Šimunek, J., van Genuchten, M. T., Gribb, M. M., and Hopmans, J. W. (1998). “Parameter estimation of unsaturated soil hydraulic properties from transient flow processes.” Soil and Tillage Research, Vol. 47, Nos. 1–2, pp. 27–36, DOI: s0167-1987(98)00069-5.CrossRefGoogle Scholar
  34. Tamoh, K. and Maslouhi, A. (2004). “Field measurements with tension infiltrometer of hydraulic properties of Mnasra soils, Morocco.” Comptes Rendus Geoscience, Vol. 336, No. 6, pp. 535–545, DOI: 10.1016/j.crte.2003.04.001.CrossRefGoogle Scholar
  35. Van Genuchten, M. T. (1980). “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1.” Soil Science Society of America Journal, Vol. 44, No. 5, pp. 892–898, DOI: 10.2136/sssaj1980.03615995004400050002x.CrossRefGoogle Scholar
  36. Vandervaere, J. P., Vauclin, M., and Elrick, D. E. (2000). “Transient flow from tension infiltrometers I. The two-parameter equation.” Soil Science Society of America Journal, Vol. 64, No. 4, pp. 1263–1272, DOI: 10.2136/sssaj2000.6441272x.CrossRefGoogle Scholar
  37. Warrick, A. W. (1992). “Models for disc infiltrometers.” Water Resources Research, Vol. 28, No. 5, 1319–1327, DOI: 10.1029/92wr00149.CrossRefGoogle Scholar
  38. Yang, X. and You, X. (2013). “Estimating parameters of van Genuchten model for soil water retention curve by intelligent algorithms.” Applied Mathematics and Information Sciences, Vol. 7, No. 5, pp. 1977–1983, DOI: 10.12785/amis/070537.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hachimi Mustapha
    • 1
  • Maslouhi Abdellatif
    • 1
    Email author
  • Tamoh Karim
    • 1
  • Qanza Hamid
    • 1
  1. 1.Laboratory LIRNE: Laboratoire Interdisciplinaire pour les Ressources Naturelles et l’Environnement (Inter-disciplinary Laboratory for Natural Resources and Environment), Dept. of PhysicsIbn Tofail UniversityKenitraMorocco

Personalised recommendations