Skip to main content
Log in

A New Tuned Mass Damper Design Method based on Transfer Functions

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Tuned mass damper (TMD) is an effective passive device in reducing harmful vibrations as long as they are designed correctly. An optimal TMD design method is proposed based on transfer functions and also differential evolution (DE) algorithm is used. The method includes optimization of all parameters which are the mass, stiffness and damping coefficients of a TMD. By using random vibration theory, the mean-square of top floor absolute acceleration, top floor displacement and the sum of mean-squares of interstorey drifts have been chosen as objective functions to be minimized with respect to upper and lower limits of TMD parameters. In the classical design, the mass is usually chosen by the designer to find the optimum values of the stiffness and damping coefficient. In addition to optimizing stiffness and damping coefficients, in this study TMD mass quantity is also optimized by using DE algorithm to minimize objective functions for TMD design. After that, structure system with TMD is tested under six near fault and three far fault ground motions by evaluating responses of the structure. The results obtained here are compared with the methods available in the literature for verification. Numerical results show that the proposed method is effective for optimal TMD design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almazan, J. L., Espinoza, G, and Aguirre. J. J. (2012). “Torsional balance of asymmetric structures by means of tuned mass dampers.” Engineering Structures, Elsevier, Vol. 42, pp. 308–328, DOI: https://doi.org/10.1016/j.engstruct.2012.04.034.

    Article  Google Scholar 

  • Arfiadi, Y. and Hadi, M. N. S. (2011). “Optimum placement and properties of properties of tuned mass dampers using hybrid genetic algorithms.” International Journal of Optimization in Civil Engineering; Iran University of Science and Technology, Vol. 1, No. 1, pp. 167–187.

    Google Scholar 

  • Bekdas, G. and Nigdeli, S. M. (2011). “Estimating optimum parameters of tuned mass dampers using harmony search.” Engineering Structures, Elsevier, Vol. 33, No. 9, pp. 2716–2723, DOI: https://doi.org/10.1016/j.engstruct.2011.05.024.

    Article  Google Scholar 

  • Bekdas, G. and Nigdeli, S. M. (2013) “Mass ratio factor for optimum tuned mass damper strategies.” International Journal of Mechanical Sciences, Elsevier, Vol. 71, pp. 68–84, DOI: https://doi.org/10.1016/j.ijmecsci.2013.03.014.

    Article  Google Scholar 

  • Bernal, A. G, Lecea, M. A, and Garcia, H. J. (2012). “Empirical attenuation relationship for Arias Intensity in Mexico and their relation with the damage potential.” XVWCEE, Lisboa, Portugal, pp. 2012-3826.

    Google Scholar 

  • Biswas, P. P., Suganthan, P. N, Wu, G, and Amaratunga, G. A. J. (2019). “Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm.” Renewable Energy, Elsevier, Vol. 132, pp. 425–438, DOI: https://doi.org/10.1016/j.renene.2018.07.152.

    Article  Google Scholar 

  • Cetin, H., Aydin, E., and Ozturk, B. (2017). “Optimal damper allocation in shear buildings with tuned mass dampers and viscous dampers.” International Journal of Earthquake and Impact Engineering, Inderscience, Vol. 2, No. 2, pp. 89–120, DOI: https://doi.org/10.1504/IJEIE.2017.089038.

    Article  Google Scholar 

  • Cetin, H., Aydin, E., and Ozturk, B. (2019). “Optimal design and distribution of viscous dampers for shear building structures under seismic excitations.” Frontiers in Built Environment, Frontiers, Vol 5, No. 90, pp. 1–13, DOI: https://doi.org/10.3389/fbuil.2019.00090.

    Google Scholar 

  • Champion, B. and Strzebonski, A. (2008). Constrained optimization, Wolfram Mathematica Tutorial Collection, Champaign, IL, USA, pp. 41–54.

    Google Scholar 

  • Cheung, Y. L. and Wong, W. O. (2011). “H2 optimization of a non-traditional dynamic vibration absorber for vibration control of structures under random force excitation.” Journal of Sound and Vibration, Elsevier, Vol. 330, No. 6, pp.1039–1044, DOI:10.1016/j.jsv.2010.10.031.

    Article  Google Scholar 

  • Cheung, Y. L., Wong, W. O., and Cheng, L. (2013). “Optimization of a hybrid vibration absorber for vibration control of structures under random force excitation.” Journal of Sound and Vibration, Elsevier, Vol. 332, No. 3, pp. 494–509, DOI: 10.1016/j.jsv.2012.09.014.

    Article  Google Scholar 

  • Connor, J. J. and Klink, B. S. A. (1996). Introduction to motion based design, Computational Mechanics Publication, Boston, USA, pp. 145–196.

    Google Scholar 

  • Den Hartog, J. P. (1956). Mechanical vibrations (4th Ed.), McGraw-Hill, New York, NY, USA, pp. 87-117.

    MATH  Google Scholar 

  • Falcon, K. C., Stone, B. J., Simcock, W D., and Andrew, C. (1967). “Optimization of vibration absorbers: A graphical method for use on idealized systems with restricted damping.” Journal of Mechanical Engineering Science, Sage, Vol. 9, No. 5, pp. 374–381, DOI: 10.1243/JMES_JOUR_1967_009_058_02.

    Article  Google Scholar 

  • Fujino, Y. and Abe, M. (1993). “Design formulas for tuned mass dampers based on a perturbation technique.” Earthquake Engineering and Structural Dynamics, Wiley, Vol. 22, No. 10, pp. 833–854, DOI: https://doi.org/10.1002/eqe.4290221002.

    Article  Google Scholar 

  • Garrido, H., Curadelli, O., and Ambrosini, D. (2013). “Improvement of tuned mass damper by using rotational inertia through Tuned viscous mass damper.” Engineering Structures, Elsevier, Vol 56, 2149-2153, DOI:10.1016/j.engstruct.2013.08.044.

  • Goldberg, D. E. (1989). Genetic algorithm in search, optimization, and machine learning, Addison-Wesley Longman Publishing, Boston, USA, pp. 1–25.

    Google Scholar 

  • Hadi, M. N. S. and Arfiadi Y (1998). “Optimum design of absorber for MDOF structures.” Journal of Structural Engineering, ASCE, Vol. 124, No. 11, pp. 1272–1280, DOI: 10.1061/(ASCE)0733-9445(1998)124: 11(1272).

    Article  Google Scholar 

  • Ikago, K., Saito, K., and Inoue, N. (2012). “Seismic control of single degree-of-freedom structure using tuned Viscous mass damper.” Earthquake Engineering and Structural Dynamics, Wiley, Vol. 41, No. 3, pp. 453–474, DOI: 10.1002/eqe.ll38.

    Article  Google Scholar 

  • Ioi, T and Ikeda, K. (1978). “On the dynamic vibration damped absorber of the vibration system.” Bulletin of the Japan Society Mechanical Engineering, The Japan Society of Mechanical Engineering, Vol. 21, No. 151, pp. 64–71, DOI: https://doi.org/10.1299/jsmel958.21.64.

    Article  Google Scholar 

  • Jacquot, R. G and Hoppe, D. L. (1973). “Optimal random vibration absorber.” Journal of Engineering Mechanics, ASCE, Vol. 99, No. 3, pp. 612–616.

    Google Scholar 

  • Kitayama, S., Arakawa, M., and Yamazaki, K. (2011). “Different evolution as the global optimization technique and its application to structural optimization.” Applied Soft Computing, Elsevier, Vol. 11, No. 4, 3792-3803, DOI: https://doi.org/10.1016/j.asoc.2011.02.012.

    Google Scholar 

  • Lee, C. L., Chen, Y T, Chung, L. L., and Wang, Y P. (2006). “Optimal design theories and applications of tuned mass dampers.” Engineering Structures, Elsevier, Vol. 28, No. 1, pp. 43–53, DOI: https://doi.org/10.1016/j.engstruct.2005.06.023.

    Article  Google Scholar 

  • Leung, A. Y. T., Zhang, H., Cheng, C. C. K., and Lee, Y. Y. (2008). “Particle swarm optimization of TMD by non-stationary base excitation during earthquake.” Earthquake Engineering and Structural Dynamics, Wiley, Vol. 37, No. 9, pp. 1223–1246, DOI: https://doi.org/10.1002/eqe.811.

    Article  Google Scholar 

  • Levy, A. V. and Montalvo, A. (1985). “The tunneling algorithm for the global minimization functions.” SIAM Journal on Scientific and Statistical Computing, SIAM, Vol. 6, No. 1, pp. 15–29, DOI: https://doi.org/10.1137/0906002.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, J. L, Tsai, K. C., and Yu, Y. J. (2011). “Bi-directional coupled tuned mass dampers for the seismic response control of two-way asymmetric-plan buildings.” Earthquake Engineering and Structural Dynamics, Wiley, Vol. 40, No. 6, pp. 675–690, DOI: https://doi.org/10.1002/eqe.l054.

    Article  Google Scholar 

  • Lu, Z., Chen, X., Zhang, D., and Dai, K. (2017). “Experimental and analytical study on the performance of particle tuned mass dampers under seismic excitation.” Earthquake Engineering and Structural Dynamics, Wiley, Vol. 46, No. 5, pp. 697–714, DOI: https://doi.org/10.1002/eqe.2826.

    Article  Google Scholar 

  • Luft, R. W. (1979). “Optimal tuned mass dampers for building.” Journal of the Structural Division, ASCE, Vol. 105, No. 12, pp. 2766–2772.

    Google Scholar 

  • Marano, G C., Greco, R, and Chiaia, B. (2010). “A comparison between different optimization criteria for tuned mass dampers design.” Journal of Sound and Vibration, Elsevier, Vol. 329, No. 23, pp. 4880–4890, DOI: https://doi.org/10.1016/j.jsv.2010.05.015.

    Article  Google Scholar 

  • Moustafa, A. and Takewaki, I. (2009). “Deterministic and probabilistic representation of near-field pulse-like ground motion.” Soil Dynamics and Earthquake Engineering, Elsevier, Vol. 30, No. 5, pp. 412–422, DOI:10.1016/j.soildyn.2009.12.013.

    Article  Google Scholar 

  • Moutinho, C. (2012). “An alternative methodology for designing tuned mass dampers to reduce seismic vibrations in building structures.” Earthquake Engineering and Structural Dynamics, Wiley, Vol. 41, No. 14, pp. 2059–2073, DOI: https://doi.org/10.1002/eqe.2174.

    Article  Google Scholar 

  • Nigdeli, S. M. and Begdas, G (2017). “Optimum tuned mass damper design in frequency domain for structures.” KSCE Journal of Civil Engineering, KSCE, Vol. 21, No. 3, pp.912–922, DOI: https://doi.org/10.1007/S12205-016-0829-2.

    Article  Google Scholar 

  • Ok, S. Y, Song, J., and Park, K. S. (2008). “Optimal performance design of bi-tuned mass damper systems using multi-objective optimization.” KSCE Journal of Civil Engineering, KSCE, Vol. 12, No. 5, pp. 313–322, DOI 10.1007/sl2205-008-0313-8.

    Article  Google Scholar 

  • Ormondroyd, J. and Den Hartog, J. P. (1928). “The theory of dynamic vibration absorber.” Transactions of the American Society of Mechanical Engineers, ASME, Vol. 50, No. 7, pp. 9–22.

    Google Scholar 

  • Ozsariyildiz, S. S. and Bozer, A. (2015). “Finding optimal parameters of tuned mass dampers.” The Structural Design of Tall and Special Buildings, Wiley, Vol. 24, No. 6, pp. 461–475, DOI: 10.1002/tal.1174.

    Article  Google Scholar 

  • Penunuri, E, Escalante, R. P., Villanueva, C., and Oy, D. P. (2011). “Synthesis of mechanisms for single and hybrid tasks using differential evolution.” Mechanism and Machine Theory, Elsevier, Vol. 46, No. 10, pp. 1335–1349, DOI: https://doi.org/10.1016/j.mechmachtheory.2011.05.013.

    Article  MATH  Google Scholar 

  • Pinkaew, T., Lukkunaprasit, P., and Chatupote, P. (2003). “Seismic effectiveness of tuned mass dampers for damage reduction of structures.” Engineering Structures, Elsevier, Vol 25, No. 1, pp. 39–46, DOI: 10.1016/S0141-0296(02)00115-3.

    Article  Google Scholar 

  • Poh’sie, G. H., Chisari, C., Rinaldin, G., Amadio, C., and Fragiacomo, M. (2016). “Optimal design of tuned mass dampers for a multistorey cross laminated timber building against seismic loads.” Earthquake Engineering and Structural Dynamics, Wiley, Vol. 45, No. 12, pp. 1977–1995, DOI: https://doi.org/10.1002/eqe.2736.

    Article  Google Scholar 

  • Rana, R. and Soong, T. T (1998). “Parametric study and simplified design of tuned mass dampers.” Engineering Structures, Elsevier, Vol. 20, No. 3, pp. 193–204, DOI: 10.1016/S0141-0296(97)00078-3.

    Article  Google Scholar 

  • Ronkkonen, J., Kukkonen, S., and Price, K. V (2005). “Real-parameter optimization with differential evolution.” IEEE Congress on Evolutionary Computation, pp. 506–513, DOI: https://doi.org/10.1109/CEC.2005.1554725.

    Google Scholar 

  • Sadek, E, Mohraz, B., Taylor, A. W, and Chung, R. M. (1997). “A method of estimating the parameters of tuned mass dampers for seismic applications.” Earthquake Engineering and Structural Dynamics, Wiley, Vol. 26, No. 6, pp. 617–635, DOI: 10.1002/(SICI)1096-9845(199706)26:63.0.CO;2-Z.

    Article  Google Scholar 

  • Sgobba, S. and Marano, G. C. (2010). “Optimum design of linear tuned mass dampers for structures with nonlinear behavior.” Mechanical System and Signal Processing, Elsevier, Vol. 24, No. 6, pp. 1739–1755, DOI: https://doi.org/10.1016/j.ymssp.2010.01.009.

    Article  Google Scholar 

  • Soong, T. T. and Dargush, G. F. (1997). Passive energy dissipation systems in structural engineering, John Wiley & Sons Ltd., Chichester, UK, and New York NY, pp. 227–317.

    Google Scholar 

  • Birito, R. S. and Ruiz, S. E. (1999). “Influence of ground motion intensity on the effectiveness of tuned mass dampers.” Earthquake Engineering and Structural Dynamics, Wiley, Vol. 28, No. 11, pp. 1255–1271, DOI: 10.1002/(SICI)1096-9845(199911)28:1K1255::AID-EQE865> 3.0.CO;2-C.

    Article  Google Scholar 

  • Storn, R. and Price, K. V (1997). “Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces.” Journal of Global Optimization, Springer, Vol. 11, No. 4, pp. 341–359, DOI: 10.1023/a:1008202821328.

    Article  MathSciNet  MATH  Google Scholar 

  • Takewaki, I. (2009). Building control with passive dampers: Optimal performance-based design for earthquakes, John Wiley & Sons, Ltd. (Asia), Singapore, pp. 51–75, DOI: https://doi.org/10.1002/9780470824931.

    Book  Google Scholar 

  • Thompson, A. G. (1981). “Optimum tuning and damping of a dynamic vibration absorber applied to a force excited and damped primary system.” Journal Sound Vibration, Elsevier, Vol. 77, No. 3, pp. 403–415, DOI: 10.1016/S0022-460X(81)80176-9.

    Article  MATH  Google Scholar 

  • Tigli, O. F. (2012). “Optimum vibration absorber (tuned mass damper) design for linear damped systems subjected to random loads.” Journal of Sound and Vibration, Elsevier, Vol. 331, No. 13, pp. 3035–3049, DOI: https://doi.org/10.1016/j.jsv.2012.02.017.

    Article  Google Scholar 

  • Villaverde, R. and Koyama, L. A. (1993). “Damped resonant appendages to increase inherent damping in buildings.” Earthquake Engineering and Structural Dynamics, Wiley, Vol. 22, No. 6, pp. 491–507, DOI: https://doi.org/10.1002/eqe.4290220603.

    Article  Google Scholar 

  • Warburton, G. B. (1982). “Optimal absorber parameters for various combinations of response and excitation parameters.” Earthquake Engineering and Structural Dynamics, Wiley, Vol. 10, No. 3, pp. 381–401, DOI: https://doi.org/10.1002/eqe.4290100304.

    Article  Google Scholar 

  • Warburton, G. B. and Ayorinde, E. O. (1980). “Optimum absorber parameters for simple systems.” Earthquake Engineering and Structural Dynamics, Wiley, Vol. 8, No. 3, pp. 197–217, DOI: https://doi.org/10.1002/eqe.4290080302.

    Article  Google Scholar 

  • Wu, G, Shen, X., Li, H., Chen, H., Lin, A., and Suganthan, P. N. (2018). “Ensemble of differential evolution variants.” Information Science, Elsevier, Vol. 423, pp. 172–186, DOI: 1016/j.ins.2017.09.053.

    Article  MathSciNet  Google Scholar 

  • Wu, J., Chen, G, and Lou, M. (1999). “Seismic effectiveness of tuned mass dampers considering soil-structure interaction.” Earthquake Engineering and Structural Dynamics, Wiley, Vol. 28, No. 11, pp. 1219–1233, DOI: doi.org/10.1002/(SICI)1096-9845(199911)28: 11<1219::AID-EQE861>3.0.CO;2-G.

    Article  Google Scholar 

  • Xiang, P. and Nishitani, A. (2015). “Optimum design and application of non-traditional tuned mass damper toward seismic response control with experimental test verification.” Earthquake Engineering and Structural Dynamics, Wiley, Vol. 44, No. 13, pp. 2199–2220, DOI: https://doi.org/10.1002/eqe.2579.

    Article  Google Scholar 

  • Yang, X. S., Bekdas, G, and Nigdeli, S. M. (2016). Metaheuristics and Optimization in Civil Engineering, Springer, Switzerland, pp. 1–42.

    Book  MATH  Google Scholar 

Download references

Acknowledgements

Not Applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ersin Aydin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetin, H., Aydin, E. A New Tuned Mass Damper Design Method based on Transfer Functions. KSCE J Civ Eng 23, 4463–4480 (2019). https://doi.org/10.1007/s12205-019-0305-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-019-0305-x

Keywords

Navigation