KSCE Journal of Civil Engineering

, Volume 23, Issue 5, pp 1963–1973 | Cite as

Impact of Probability Distribution of Hydraulic Conductivity on Groundwater Contaminant Transport

  • Taeho Bong
  • Younghwan SonEmail author
Environmental Engineering


In this study, a simple approach using effective hydraulic conductivity (Ke) was proposed to consider the spatial variability of K, and the impact of the probability density function (PDF) of K on contaminant transport in heterogeneous soil was investigated. To analyze the impact of the PDF of K according to the spatial variability of K, non-Gaussian random fields were generated for four probability distributions (Gaussian, log-Gaussian, Weibull, and gamma), and Ke was calculated from the random fields to represent the flow through heterogeneous media. Subsequently, contaminant transport analysis was easily performed by the closed-form solution, and probabilistic analysis was performed using a Monte Carlo simulation. The results show that the statistical properties of Ke were changed by the PDF and spatial variability of Kh, and the PDF of Kh has considerable effects on the probabilistic results for contaminant transport. In particular, the PDF has a greater impact on the probabilistic results when the autocorrelation distance is smaller (i.e., highly heterogeneous soil). Therefore, the selection of the PDF of K is very important for the stochastic modeling of contaminant transport, and the gamma distribution was found to be effective in expressing the probability distribution of K.


contaminant transport hydraulic conductivity probability distribution soil heterogeneity random field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ASTM (2010). Standard guide for risk-based corrective action applied at petroleum release sites, E1739-95, ASTM International, West Conshohocken, PA, USA.Google Scholar
  2. Baalousha, H. and Köngeter, J. (2006). “Stochastic modelling and risk analysis of groundwater pollution using FORM coupled with automatic differentiation.” Adv. Water Resour., Vol. 29, No. 12, pp. 1815–1832, DOI: 10.1016/j.advwatres.2006.01.006.CrossRefGoogle Scholar
  3. Bain, L. J. and Engelhardt, M. (1980). “Probability of correct selection of weibull versus gamma based on likelihood ratio.” Communications in Statistics-Theory and Methods, Vol. 9, No. 4, pp. 375–381, DOI: 10.1080/03610928008827886.CrossRefzbMATHGoogle Scholar
  4. Bhattacharjee, S., Ryan, J. N., and Elimelech, M. (2002). “Virus transport in physically and geochemically heterogeneous subsurface porous media.” J. Contam. Hydrol., Vol. 57, Nos. 3–4, pp. 161–187. DOI: 10.1016/S0169-7722(02)00007-4.CrossRefGoogle Scholar
  5. Chrysikopoulos, C. V., Kitanidis, P. K., and Roberts, P. V. (1990). “Analysis of one-dimensional solute transport through porous media with spatially variable retardation factor.” Water Resour. Res., Vol. 26, No. 3, pp. 437–446, DOI: 10.1029/WR026i003p00437.CrossRefGoogle Scholar
  6. Clausnitzer, V., Hopmans, W., and Starr, J. L. (1998). “Parameter uncertainty analysis of common infiltration models.” Soil Sci. Soc. Am. J., Vol. 62, pp. 1477–1487, DOI: 10.2136/sssaj1998.03615995006200060002x.CrossRefGoogle Scholar
  7. Cooke, R. A., Mostaghimi, S., and Woeste, F. (1995). “Effect of hydraulic conductivity probability distribution function on simulated solute leaching.” Water Environ. Res., Vol. 67, No. 2, pp. 159–168, DOI: 10.2175/106143095X131303.CrossRefGoogle Scholar
  8. Dagan, G. and Neuman, S. P. (2005). Subsurface flow and transport: A stochastic approach, Cambridge University Press, Cambridge, UK.Google Scholar
  9. DeGroot, D. J. and Baecher, G. B. (1993). “Estimating autoconvariance of In-situ soil properties.” J. Geotech. Geoenviron., Vol. 119 No. 1, pp. 147–166, DOI: 10.1061/(ASCE)0733-9410(1993)119:1(147).Google Scholar
  10. Durmusoglu, E. and Corapcioglu, M. Y. (2000). “Experimental study of horizontal barrier formation by colloidal silica.” J. Eenviron. Eng., Vol. 126, No. 9, pp. 833–841, DOI: 10.1061/(ASCE)0733-9372 (2000)126:9(833).CrossRefGoogle Scholar
  11. El-Ramly, H., Morgenstern, N. R., and Cruden, D. M. (2002). “Probabilistic slope stability analysis for practice.” Can. Geotech. J., Vol. 39, No. 3, pp. 665–683, DOI: 10.1139/t02-034.CrossRefGoogle Scholar
  12. Foussereau, X., Graham, W. D., and Rao, P. S. C. (2000). “Stochastic analysis of transient flow in unsaturated heterogeneous soils.” Water Resour. Res., Vol. 36, No. 4, pp. 891–910, DOI: 10.1029/1999WR900342.CrossRefGoogle Scholar
  13. Gelhar, L. W. (1993). Stochastic subsurface hydrology, Prentice Hall, Englewood Cliffs, NJ, USA.Google Scholar
  14. Ghanem, R. G. and Spanos, P. D. (1991). Stochastic finite element: A spectral approach, Revised Ed., Springer, New York, NY, USA.CrossRefGoogle Scholar
  15. Harter, T. and Yeh, T. C. J. (1996). “Stochastic analysis of solute transport in heterogeneous, variably saturated soils.” Water Resour. Res., Vol. 32, No. 6, pp. 1585–1595, DOI: 10.1029/96WR00502.CrossRefGoogle Scholar
  16. Hashimoto, I., Deshpande, K. B., and Thomas, H. C. (1964). “Peclet numbers and retardation factors for ion exchange columns.” Ind. Eng. Chem. Fundam., Vol. 3, No. 3, pp. 213–218, DOI: 10.1021/i160011a007.CrossRefGoogle Scholar
  17. Hu, B. X., Meerschaert, M. M., Barrash, W., Hyndman, D. W., He, C., Li, X., and Guo, L. (2009). “Examining the influence of heterogeneous porosity fields on conservative solute transport.” J. Contam. Hydrol., Vol. 108, Nos. 3–4, pp. 77–88, DOI: 10.1016/j.jconhyd.2009.06.001.CrossRefGoogle Scholar
  18. Ingebritsen, S. E., and Sanford, W. E. (1998). Groundwater in geologic processes, Cambridge University Press, Cambridge, UK.Google Scholar
  19. Jarvis, N. J. and Messing, I. (1995). “Near-saturated hydraulic conductivity in soils of contrasting texture measured by tension infiltrometers.” Soil Sci. Soc. Am. J., Vol. 59, pp. 27–34, DOI: 10.2136/sssaj1995. 03615995005900010004x.CrossRefGoogle Scholar
  20. Klute, A. and Dirksen, C. (1986). “Hydraulic conductivity and diffusivity: Laboratory methods.” Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods. ASA, Madison, WI, USA, pp. 687–734.Google Scholar
  21. Leblanc, D. R., Garabedian, S., Hess, K., Gelhar, L. W., Quadri, R., Stollenwerk, K. G., and Wood, W. W. (1991). “Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 1. Experimental design and observed tracer movement.” Water Resour. Res., Vol. 27, No. 5, pp. 895–910, DOI: 10.1029/91WR00241.CrossRefGoogle Scholar
  22. Li, K. S. and White, W. (1987). Probabilistic characterization of soil profiles, Report 19, Dept. Civil Engrn., Australian Defence Force Academy, Canberra, Australia.Google Scholar
  23. Logsdon, S. D., Allmaras, R. R., Wu, L., Swan, J. B., and Randall, G. W. (1990). “Macroporosity and its relation to saturated hydraulic conductivity under different tillage practices.” Soil Sci. Soc. Am. J., Vol. 54, pp. 1096–1101, DOI: 10.2136/sssaj1990.03615995005400040029x.CrossRefGoogle Scholar
  24. Matheron, G. (1967). Elements for a theory of porous media, Masson, Paris.Google Scholar
  25. Mohanty, B. P., Kanvar, R. S., and Horon, R. (1991). “A robust-resistant approach to interpret spatial behavior of saturated hydraulic conductivity of a glacial till soil under no-tillage system.” Water Resour. Res., Vol. 27, No. 11, pp. 2979–2992, DOI: 10.1029/91WR01720.CrossRefGoogle Scholar
  26. Moura, M. V. T., Leopoldo, P. R., and Marques JR., S. (1999). “An alternative to characterize the value of hydraulic conductivity in saturated soil.” Irriga, Vol. 4, No. 2, pp. 83–91.Google Scholar
  27. Papadrakakis, M. and Stefanou, G. (2014). Multiscale modeling and uncertainty quantification of materials and structures, Springer, Basel, Switzerland.CrossRefGoogle Scholar
  28. Parry, R. H. G. and Wroth, C. P. (1977). “Shear properties of soft clays, state-of-the-art paper.” Proc. 5th Int. Symposium on Soft Clay, Bangkok, Thailand.Google Scholar
  29. Phoon, K. K., Huang, H. W., and Quek, S. T. (2005). “Simulation of strongly non-Gaussian process using Karhunen-Loeve expansion.” Probabilist. Eng. Mech., Vol. 20, No. 2, pp. 188–198, DOI: 10.1016/j.probengmech.2005.05.007.CrossRefGoogle Scholar
  30. Phoon, K. K. and Kulhawy, F. H. (1999). “Characterization of geotechnical variability.” Can. Geotech. J., Vol. 36, No. 4, pp. 612–624, DOI: 10.1139/t99-038.CrossRefGoogle Scholar
  31. Rackwitz, R. (2000). “Reviewing probabilistic soils modeling.” Comput. Geotech., Vol. 26, Nos. 3–4, pp. 199–223, DOI: 10.1016/S0266-352X(99)00039-7.CrossRefGoogle Scholar
  32. Renard, P. and de Marsily, G. (1997). “Calculating equivalent permeability: A review.” Adv. Water Resour., Vol. 20, Nos. 5–6, pp. 253–278, DOI: 10.1016/S0309-1708(96)00050-4.CrossRefGoogle Scholar
  33. Selvadurai, A. P. S. and Selvadurai, P. A. (2010). “Surface permeability tests: Experiments and modelling for estimating effective permeability.” Proc. R. Soc. A., Vol. 466, No. 2122, pp. 2819–2846, DOI: 10.1098/rspa.2009.0475.CrossRefGoogle Scholar
  34. Spanos, P. D. and Ghanem, R. G. (1989). “Stochastic finite element expansion for random media.” J. Eng. Mech., Vol. 115, No. 5, pp. 1035–1053, DOI: 10.1061/(ASCE)0733-9399(1989)115:5(1035).CrossRefGoogle Scholar
  35. Sudret, B. and Der Kiureghian, A. (2000). Stochastic finite element methods and reliability: A state-of-the-art report, Technical Rep. UCB/SEMM-2000/08, Department of Civil and Environmental Engineering, U.C. Berkeley, Berkeley, CA, USA.Google Scholar
  36. U.S.EPA (1996). Soil screening guidance: Technical background document, U.S. Environmental Protection Agency, Office of Emergency Response, Washington, D.C., USA.Google Scholar
  37. Van Genuchten, M. T. and Alves, W. J. (1982). Analytical solutions of the One-dimensional convective-dispersive solute transport equation, Technical Bull., No. 1661, United Stated Department of Agriculture, Washington D.C., USA.Google Scholar
  38. Vanmarcke, E. H. (1983). Random fields: Analysis and synthesis, MIT Press, Cambridge, UK.zbMATHGoogle Scholar
  39. Warrick, A. W. and Nielsen, D. R. (1980). “Spatial variability of soil physical properties in the field.” Applications of Soil Physics, Hillel, D. Ed., Academic Press, New York, NY, USA.Google Scholar
  40. Wheater, H. S., Tompkins, J. A., Van Leeuwen, M., and Butler, A. P. (2000). “Uncertainty in groundwater flow and transport modelling - a stochastic analysis of well-protection zones.” Hydrol. Process., Vol. 14, No. 11, pp. 2019–2029, DOI: 10.1002/1099-1085(20000815/30)14:11/12<2019::AID-HYP52>3.0.CO;2-H.CrossRefGoogle Scholar
  41. Wiener, O. (1912). Theory of the Mixing Body for the Field of Stationary Flow. Polarization and energy. Dep. Math-Physical Class Königl. Säcsh society. Wissen 32, pp. 509–604.Google Scholar
  42. Wilding, L. P. (1985). “Spatial variability: Its documentation, accommodation and implication to soil surveys.” Soil Spatial Variability, D. R. Nielsen, J. Bouma, Ed., Pudoc, Wageningen, Netherlands, pp. 166–194.Google Scholar
  43. Zhan, H. and Wheatcraft, S. (1999). “Uncertainty of one-dimensional ground-water flow in strongly heterogeneous formations.” J. Hydrol. Eng., Vol. 4, No. 2, pp. 152–159, DOI: 10.1061/(ASCE)1084-0699 (1999)4:2(152).CrossRefGoogle Scholar
  44. Zhang, Y. and Neuman, S. P. (1990). “A quasi-linear theory of non- Fickian and subsurface dispersion: 2. Application to anisotropic media and the Borden site.” Water Resour. Res., Vol. 26, No. 5, pp. 903–913, DOI: 10.1029/WR026i005p00903.Google Scholar

Copyright information

© Korean Society of Civil Engineers 2019

Authors and Affiliations

  1. 1.Institute of Construction and Environmental EngineeringSeoul National UniversitySeoulKorea
  2. 2.Dept. of Rural Systems Engineering, and Research Institute for Agriculture & Life SciencesSeoul National UniversitySeoulKorea

Personalised recommendations