Skip to main content
Log in

Effect of the Realistic Tire Contact Pressure on the Rutting Performance of Asphaltic Concrete Pavements

  • Mechanistic Evaluation of Asphalt Paving Materials and Structures
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

The effect of different configurations of normal contact stresses on the rutting performance of asphalt concrete overlays on a soft and stiff Crushed Aggregate Base (CAB) layer is investigated. A three-dimensional (3-D) finite element model of a pavement structure is generated. The effect of different types of simplified normal contact stresses and a realistic 3-D normal stress on the rutting performance is investigated. Since the failure mechanism of asphaltic materials at high temperature is mainly related to the flow of the material, the viscoelastic and viscoplastic constitutive relationships coupled with the hardening-relaxation mechanisms are utilized to represent the behavior of asphalt concrete layer. This constitutive relationship is part of the PANDA (Pavement Analysis using Nonlinear Damage Approach) model developed by the authors and their collaborators. As the result of simulation, the magnitude of the rut depth on the asphalt concrete layer is generally determined to be inversely proportional to the stiffness of the CAB layer, and the rut depth on the asphalt concrete layer under the realistic 3-D normal stress is about 1.5 times greater than the rut depth under uniformly distributed normal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abu Al-Rub, R. K., Darabi, M. K., Little, D. N., and Masad, E. A. (2010). “A micro-damage healing model that improves prediction of fatigue life in asphalt mixes.” International Journal of Engineering Science, vol. 48, no. 11, pp. 966–990, DOI: 10.1016/j.ijengsci. 2010.09.016.

    Article  Google Scholar 

  • Cao, W. and Kim, Y. R. (2016). “A viscoplastic model for the confined permanent deformation of asphalt concrete in compression.” Mech. Mater., vol. 92, pp. 235–247, DOI: 10.1016/j.mechmat.2015.10.001.

    Article  Google Scholar 

  • Chen, F., Balieu, R., and Kringos, N. (2017). “Thermodynamics-based finite strain viscoelastic-viscoplastic model coupled with damage for asphalt material.” Int. J. Solids Struct., vol. 129, pp. 61–73, DOI: 10.1016/j.ijsolstr.2017.09.014.

    Article  Google Scholar 

  • Cho, Y., McCullough, B. F., and Weissmann, J. (1996). “Considerations on finite-element method application in pavement structural analysis.” Transportation Research Board, Washington, D.C., vol. 1539, pp. 96–101, DOI: 10.3141/1539-13.

    Article  Google Scholar 

  • Coleri, E., Harvey, J. T., Yang, K., and Boone, J. M. (2012). “Development of a micromechanical finite element model from computed tomography images for shear modulus simulation of asphalt mixtures.” Constr. Build Mater., vol. 30, pp. 783–793, DOI: 10.1016/j.conbuildmat. 2011.12.071.

    Article  Google Scholar 

  • Darabi, M. K., Abu Al Rub, R. K., Masad, E., Huang, C. W., and Little, D. (2012b). “A modified viscoplastic model to predict the permanent deformation of asphaltic materials under cyclic-compression loading at high temperatures.” International Journal of Plasticity, vol. 35, pp. 100–134, DOI: 10.1016/j.ijplas.2012.03.001.

    Article  Google Scholar 

  • Darabi, M. K., Abu Al-Rub, R. K., Masad, E. A., and Little, D. N. (2012a). “A thermodynamic framework for constitutive modeling of time-and rate-dependent materials, Part ii: Numerical aspects and application to asphalt concrete.” International Journal of Plasticity, vol. 35, pp. 67–99, DOI: 10.1016/j.ijplas.2012.02.003.

    Article  Google Scholar 

  • Darabi, M. K., Abu Al-Rub, R. K., Masad, E. A., and Little, D. N. (2013). “Cyclic hardening-relaxation viscoplasticity model for asphalt concrete materials.” J Eng Mech, vol. 139, no. 7, pp. 832–847, DOI: 10.1061/(ASCE) EM.1943-7889.0000541.

    Article  Google Scholar 

  • Darabi, M. K., Abu Al-Rub, R. K., Masad, E. A., Huang, C. W., and Little, D. N. (2011). “A thermo-viscoelastic-viscoplastic-viscodamage constitutive model for asphaltic materials.” Int. J. Solids Struct., vol. 48, no. 1, pp. 191–207, DOI: 10.1016/j.ijsolstr.2010.09.019.

    Article  MATH  Google Scholar 

  • Dave, E. V., Paulino, G. H., and Buttlar, W. G. (2010). “Asphalt pavement aging and temperature dependent properties through a functionally graded viscoelastic model, Part-i: Development, implementation and verification.” in: Kawasaki, A., Kumakawa, A., Niino, M. (Eds.), Multiscale, multifunctional and functionally graded materials,Trans Tech Publications Ltd, Stafa, Zurich, pp. 47–52.

    Google Scholar 

  • Drakos, C. A., Roque, R., and Birgisson, B. (2001). “Effects of measured tire contact stresses an near-surface rutting.” Assessing and Evaluating Pavements, pp. 59–69, DOI: 10.3141/1764-07.

    Google Scholar 

  • Epps, J., Petersen, J. C., Kennedy, T. W., Anderson, D., and Haas, R. (1986). “Chemistry, rheology, and engineering properties of manganesetreated asphalts and asphalt mixtures.” Transport. Res. Rec., vol. 1096, pp. 106–119, http://worldcat.org/isbn/309041163.

    Google Scholar 

  • Gibson, N., Qi, X., Shenoy, A., Al-Khateeb, G., Kutay, M. E., Andriescu, A., Stuart, K., Youtcheff, J., and Harman, T. (2012). Full-scale accelerated performance testing for superpave and structural validation, FHWA-HRT-11-045.

    Google Scholar 

  • Huang, C. W. (2008). Development and numerical implementation of nonlinear viscoelastic-viscoplastic model for asphalt materials, Ph.D. Dissertation, Texas A&M University, http://hdl.handle.net/1969.1/ETD-TAMU-3137.

    Google Scholar 

  • Huang, C. W., Abu Al Rub, R. K., Masad, E. A., Little, D., and Airey, G. (2011). “Numerical implementation and validation of a nonlinearviscoelastic and viscoplastic model for asphalt concrete mixes.” International Journal of Pavement Engineering, vol. 12, no. 4, pp. 433–447, DOI: 10.1080/10298436.2011.574137.

    Article  Google Scholar 

  • Huang, C. W., Masad, E., Muliana, A. H., and Bahia, H. (2007). “Nonlinearly viscoelastic analysis of asphalt mixes subjected to shear loading.” Mechanics of Time-Dependent Materials, vol. 11, no. 2, pp. 91–110, DOI: 10.1007/s11043-007-9034-5.

    Article  Google Scholar 

  • Kim, Y. R., Allen, D. H., and Little, D. N. (2007). “Computational constitutive model for predicting nonlinear viscoelastic damage and fracture failure of asphalt concrete mixtures.” International Journal of Geomechanics, vol. 7, no. 2, pp. 102–110, DOI: 10.1061/(ASCE)1532-3641(2007)7:2(102).

    Article  Google Scholar 

  • Kim, Y. R., Baek, C., Underwood, B. S., Subramanian, V., Guddati, M. N., and Lee, K. (2008). “Application of viscoelastic continuum damage model based finite element analysis to predict the fatigue performance of asphalt pavements.” KSCE J. Civ. Eng., vol. 12, no. 2, pp. 109–120, DOI: 10.1007/s12205-008-0109-x.

    Article  Google Scholar 

  • Krishnan, J. M. and Rajagopal, K. R. (2004). “Thermodynamic framework for the constitutive modeling of asphalt concrete: Theory and applications.” Journal of Materials in Civil Engineering (ASCE), vol. 16, no. 2, pp. 155–166, DOI: 10.1061/(ASCE)0899-1561(2004) 16:2(155).

    Article  Google Scholar 

  • Lee, H. J., Daniel, J. S., and Kim, Y. R. (2000). “Continuum damage mechanics-based fatigue model of asphalt concrete.” J. Mater Civil Eng., vol. 12, no. 2, pp. 105–112, DOI: 10.1061/(ASCE)0899-1561(2000) 12:2(105).

    Article  Google Scholar 

  • Liu, Y., Dai, Q. L., and You, Z. P. (2009). “Viscoelastic model for discrete element simulation of asphalt mixtures.” J. Eng. Mech.-ASCE, vol. 135, no. 4, pp. 324–333, DOI: 10.1061/(ASCE)0733-9399(2009)135:4(324).

    Article  Google Scholar 

  • Lu, Y. and Wright, P. J. (1998). “Numerical approach of visco-elastoplastic analysis for asphalt mixtures.” Computers & Structures, vol. 69, no. 2, pp. 139–147, DOI: 10.1016/S0045-7949(98)00139-4.

    Article  MATH  Google Scholar 

  • Masad, E., Dessouky, S., and Little, D. (2007). “Development of an elastoviscoplastic microstructural-based continuum model to predict permanent deformation in hot mix asphalt.” International Journal of Geomechanics, vol. 7, no. 2, pp. 119–130, DOI: 10.1061/(ASCE) 1532-3641(2007)7:2(119).

    Article  Google Scholar 

  • Masad, E., Huang, C. W., Airey, G., and Muliana, A. (2008). “Nonlinear viscoelastic analysis of unaged and aged asphalt binders.” Constr Build Mater, vol. 22, no. 11, pp. 2170–2179, DOI: 10.1016/j.conbuildmat. 2007.08.012.

    Article  Google Scholar 

  • Masad, E., Tashman, L., Little, D., and Zbib, H. (2005). “Viscoplastic modeling of asphalt mixes with the effects of anisotropy, damage and aggregate characteristics.” Mech Mater, vol. 37, no. 12, pp. 1242–1256, DOI:10.1016/j.mechmat.2005.06.003.

    Article  Google Scholar 

  • Misra, A., Singh, V., and Darabi, M. K. (2017). “Asphalt pavement rutting simulated using granular micromechanics-based rate-dependent damage-plasticity model.” International Journal of Pavement Engineering, pp. 1–14, DOI: 10.1080/10298436.2017.1380804.

    Google Scholar 

  • Myers, L., Roque, R., Ruth, B., and Drakos, C. (1999). “Measurement of contact stresses for different truck tire types to evaluate their influence on near-surface cracking and rutting.” Transportation Research Record: Journal of the Transportation Research Board, vol. 1655, pp. 175–184, DOI: 10.3141/1655-23.

    Article  Google Scholar 

  • Novak, M., Birgisson, B., and Roque, R. (2003). “Tire contact stresses and their effects on instability rutting of asphalt mixture pavements-three-dimensional finite element analysis.” Transport. Res. Rec., vol. 1853, pp. 150–156, DOI: 10.3141/1853-17.

    Article  Google Scholar 

  • Perzyna, P. (1971). “Thermodynamic theory of viscoplastcity.” Advances in Applied Mechanics, vol. 11, pp. 313–354, DOI: 10.1016/S0065-2156(08)70345-4.

    Article  Google Scholar 

  • Rushing, J. F., Darabi, M. K., Rahmani, E., and Little, D. N. (2017). “Comparing rutting of airfield pavements to simulations using pavement analysis using nonlinear damage approach (panda).” International Journal of Pavement Engineering, vol. 18, no. 2, pp. 138–159, DOI: 10.1080/10298436.2015.1039007.

    Article  Google Scholar 

  • Schapery, R. A. (1969). “On the characterization of nonlinear viscoelastic materials.” Polymer Engineering & Science, vol. 9, no. 4, pp. 295–310, DOI: 10.1002/pen.760090410.

    Article  Google Scholar 

  • Shahsavari, H., Naghdabadi, R., Baghani, M., and Sohrabpour, S. (2016). “A viscoelastic-viscoplastic constitutive model considering damage evolution for time dependent materials: Application to asphalt mixes.” Int. J. Damage Mech., vol. 25, pp. 921–942, DOI: 10.1177/1056789516658506.

    Article  Google Scholar 

  • Siddharthan, R. V., Krishnamenon, N., El-Mously, M., and Sebaaly, P. E. (2002). “Investigation of tire contact stress distributions on pavement response.” J. Transp. Eng.-ASCE, vol. 128, no. 2, pp. 136–144, DOI: 10.1061/(ASCE)0733-947X(2002)128:2(136).

    Article  Google Scholar 

  • Souza, L. T., Kim, Y. R., Souza, F. V., and Castro, L. S. (2012). “Experimental testing and finite-element modeling to evaluate the effects of aggregate angularity on bituminous mixture performance.” J. Mater. Civil Eng., vol. 24, no. 3, pp. 249–258, DOI: 10.1061/(ASCE) MT.1943-5533.0000386.

    Article  Google Scholar 

  • Subramanian, V., Guddati, M. N., and Kim, Y. R. (2013). “A viscoplastic model for rate-dependent hardening for asphalt concrete in compression.” Mech Mater., vol. 59, pp. 142–159, DOI: 10.1016/j.mechmat.2012.10.003.

    Article  Google Scholar 

  • Tielking, J. T. (1992). “Conventional and wide base radial truck tyres.” The Third International Symposium on Heavy Vehicle Weights and Dimensions, Queen's College Cambridge, UK, pp. 182–190.

    Google Scholar 

  • Varma, S. and Kutay, M. E. (2016). “Viscoelastic nonlinear multilayered model for asphalt pavements.” J. Eng. Mech., Vol. 142, No. 7, DOI: 10.1061/(ASCE)EM.1943-7889.0001095.

    Google Scholar 

  • Wang, H. and Al-Oadi, I. L. (2009). “Combined effect of moving wheel loading and three-dimensional contact stresses an perpetual pavement responses.” Transport Res. Rec., pp. 53–61, DOI: 10.3141/2095-06.

    Google Scholar 

  • Wang, H. and Al-Qadi, I. L. (2010). “Near-surface pavement failure under multiaxial stress state in thick asphalt pavement.” Transport Res. Rec., pp. 91–99, DOI: 10.3141/2154-08.

    Google Scholar 

  • Wang, H., Al-Qadi, I. L., and Stanciulescu, I. (2010). Effect of friciton on rolling tire-pavement interactio, Report, NEXTRANS Project No 019PY01, Technical Summary, Purdue University.

    Google Scholar 

  • Wang, H., Al-Qadi, I. L., Portas, S., and Coni, M. (2013). “Threedimensional finite element modeling of instrumented airport runway pavement responses.” Transport Res. Rec., pp. 76–83, DOI: 10.3141/2367-08.

    Google Scholar 

  • Weissman, S. (1999). “Influence of tire-pavement contact stress distribution on development of distress mechanisms in pavements. Transportation Research Record.” Journal of the Transportation Research Board, vol. 1655, pp. 161–167, DOI: 10.3141/1655-21.

    Article  Google Scholar 

  • Zhu, H. R. and Sun, L. (2013). “Mechanistic rutting prediction using a two-stage viscoelastic-viscoplastic damage constitutive model of asphalt mixtures.” J. Eng. Mech., vol. 139, no. 11, pp. 1577–1591, DOI: 10.1061/(ASCE)EM.1943-7889.0000598.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud K. Darabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SM., Darabi, M.K., Little, D.N. et al. Effect of the Realistic Tire Contact Pressure on the Rutting Performance of Asphaltic Concrete Pavements. KSCE J Civ Eng 22, 2138–2146 (2018). https://doi.org/10.1007/s12205-018-4846-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-018-4846-1

Keywords

Navigation