Skip to main content
Log in

Three-dimensional Seismic Displacement Analysis of Rock Slopes based on Hoek-Brown Failure Criterion

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Seismic force is one of the main factors resulting in the slip failure of steep rock slopes. In this paper, the seismic displacement analysis of rock slopes is carried out by virtue of the kinematical theorem of limit analysis and the Newmark method. It is assumed that the slope has a curvilinear cone-shaped failure mechanism and its materials are subjected to the Hoek-Brown failure criterion. The generalized tangential technique is employed to obtain equivalent parameters from the Hoek-Brown criterion. According to the three-dimensional failure mechanism, the internal energy dissipation and external work are respectively calculated, and the effect of horizontal seismic force is included by using the equivalent pseudo-static method. Subsequently, the yield acceleration is calculated for three-dimensional failure mechanism, and the results are shown to be valid when compared with the previous solutions. Parameter analysis is used to represent how the Hoek-Brown criterion parameters impact on the yield acceleration. The failure mechanism is also obtained during the process of limit analysis, and a dimensionless coefficient is adopted to investigate the influence of it on the seismic displacements of slopes. The results of calculations are given for a series of actual seismic waves and compared with the results calculated from empirical formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amiri, F., Anitescu, C., Arroyo, M., Bordas, S. P., and Rabczuk, T. (2014). “XLME interpolants, a seamless bridge between xfem and enriched meshless methods.” Computational Mechanics, Vol. 53, No. 1, pp. 45–57, DOI: 10.1007/s00466-013-0891-2.

    Article  MathSciNet  MATH  Google Scholar 

  • Areias, P., Msekh, M. A., and Rabczuk, T. (2016a). “Damage and fracture algorithm using the screened poisson equation and local remeshing.” Engineering Fracture Mechanics, Vol. 158, pp. 116–143, DOI: 10.1016/j.engfracmech.2015.10.042.

    Article  Google Scholar 

  • Areias, P. and Rabczuk, T. (2017). “Steiner-point free edge cutting of tetrahedral meshes with applications in fracture.” Finite Elements in Analysis and Design, Vol. 132, pp. 27–41, DOI: 10.1016/j.finel.2017.05.001.

    Article  Google Scholar 

  • Areias, P., Rabczuk, T., and Camanho, P. P. (2014). “Finite strain fracture of 2D problems with injected anisotropic softening elements.” Theoretical and Applied Fracture Mechanics, Vol. 72, pp. 50–63, DOI: 10.1016/j.tafmec.2014.06.006.

    Article  Google Scholar 

  • Areias, P., Rabczuk, T., and Dias-Da-Costa, D. (2013). “Element-wise fracture algorithm based on rotation of edges.” Engineering Fracture Mechanics, Vol. 110, No. 3, pp. 113–137, DOI: 10.1016/j.engfracmech.2013.06.006.

    Article  Google Scholar 

  • Areias, P., Rabczuk, T., and Msekh, M. A. (2016b). “Phase-field analysis of finite-strain plates and shells including element subdivision.” Computer Methods in Applied Mechanics and Engineering, Vol. 312, pp. 322–350, DOI: 10.1016/j.cma.2016.01.020.

    Article  MathSciNet  Google Scholar 

  • Areias, P., Reinoso, J., Camanho, P. P., Sá, J. C. D., and Rabczuk, T. (2017). “Effective 2D and 3D crack propagation with local mesh refinement and the screened poisson equation.” Engineering Fracture Mechanics, DOI: 10.1016/j.engfracmech.2017.11.017.

    Google Scholar 

  • Ausilio, E. and Zimmaro, P. (2015). “Displacement-based seismic design of a shallow strip footing positioned near the edge of a rock slope.” International Journal of Rock Mechanics and Mining Sciences, Vol. 76, No. 7, pp. 68–77, DOI: 10.1016/j.ijrmms.2015.02.010.

    Article  Google Scholar 

  • Bray, J. D. and Rathje, E. M. (1998). “Earthquake-induced displacements of solid-waste landfills.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 3, pp. 242–253, DOI: 10.1061/(ASCE) 1090-0241(1998)124:3(242).

    Article  Google Scholar 

  • Chang, C. J., Chen, W. F., and Yao, J. T. (1984). “Seismic displacements in slopes by limit analysis.” Journal of Geotechnical Engineering, Vol. 110, No. 7, pp. 860–874, DOI: 10.1061/(ASCE)0733-9410(1984) 110:7(860).

    Article  Google Scholar 

  • Chen, W. F. and Liu, X. L. (1990). “Limit analysis in soil mechanics.” Elsevier Science, Amsterdam.

    Google Scholar 

  • Cong, S., Tang, L., Ling, X., Geng, L., and Lu, J. (2018). “Boundary effect on the seismic response of a three-dimensional soil slope with a shallow foundation on top.” KSCE Journal of Civil Engineering, Vol. 22, No. 4, pp. 1130–1140, DOI: 10.1007/s12205-017-1535-4.

    Article  Google Scholar 

  • Crespellani, T., Madiai, C., and Vannucchi, G. (1998). “Earthquake destructiveness potential factor and slope stability.” Géotechnique, Vol. 48, No. 3, pp. 411–419, DOI: 10.1680/geot.1998.48.3.411.

    Article  Google Scholar 

  • He, Y., Hazarika, H., Yasufuku, N., Yasufuku, N., Han, Z., and Li, Y. (2015). “Three-dimensional limit analysis of seismic displacement of slope reinforced with piles.” Soil Dynamics and Earthquake Engineering, Vol. 77, pp. 446–452, DOI: 10.1016/j.soildyn.2015.06.015.

    Article  Google Scholar 

  • Hoek, E., Carranze-Torres, C., and Corkum, B. (2002). “Hoek-Brown failure criterion-2002 edition.” Proceedings of NARMS-Tac, pp. 267–273. Retrieved (https://doi.org/photo.jlwu.idv.tw/~enggeo/rocklaboratory/101/HOEK-BROWN.pdf).

    Google Scholar 

  • Hsieh, S. Y. and Lee, C. T. (2011). “Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration.” Engineering Geology, Vol. 122, No. 1, pp. 34–42, DOI: 10.1016/j.enggeo.2010.12.006.

    Article  Google Scholar 

  • Jafarian, Y. and Lashgari, A. (2016). “Simplified procedure for coupled seismic sliding movement of slopes using displacement-based critical acceleration.” International Journal of Geomechanics, Vol. 16, No. 4, DOI: 10.1061/(ASCE)GM.1943-5622.0000578.

    Google Scholar 

  • Lim, K., Lyamin, A. V., Cassidy, M. J., and Li, A. J. (2016). “Threedimensional slope stability charts for frictional fill materials placed on purely cohesive clay.” International Journal of Geomechanics, Vol. 16, No. 2, DOI: 10.1061/(ASCE)GM.1943-5622.0000526.

    Google Scholar 

  • Li, E., Zhuang, X., Zheng, W., and Cai, Y. (2014). “Effect of graph generation on slope stability analysis based on graph theory.” Journal of Rock Mechanics and Geotechnical Engineering, Vol. 6, No. 4, pp. 380–386, DOI: 10.1016/j.jrmge.2014.05.003.

    Article  Google Scholar 

  • Li, T. Z. and Yang, X. L. (2018a). “Reliability analysis of tunnel face in broken soft rocks using improved response surface method.” International Journal of Geomechanics, Vol. 18, No. 5, DOI: 10.1061/(ASCE)GM.1943-5622.0001129.

    Google Scholar 

  • Li, T. Z. and Yang, X. L. (2018b). “Risk assessment model for water and mud inrush in deep and long tunnels based on normal grey cloud clustering method.” KSCE Journal of Civil Engineering, Vol. 22, No. 5, pp. 1991–2001, DOI: 10.1007/s12205-017-0553-6.

    Article  Google Scholar 

  • Li, Z.W. and Yang, X. L. (2018c). “Active earth pressure for soils with tension cracks under steady unsaturated flow conditions.” Canadian Geotechnical Journal, DOI: 10.1139/cgj-2017-0713.

    Google Scholar 

  • Mankelow, J. M. and Murphy, W. (1998). “Using GIS in the probabilistic assessment of earthquake triggered landslide hazards.” Journal of Earthquake Engineering, Vol. 2, No. 2, pp. 593–623, DOI: 10.1080/13632469809350336

    Google Scholar 

  • Marinos, P. and Hoek, E. (2000). “GSI: A geologically friendly tool for rock mass strength estimation.” Proc. GeoEng2000 Conference, Melbourne, Retrieved (https://doi.org/www.geoplanning.it/test/wp-content/uploads/2012/02/GSI.pdf).

    Google Scholar 

  • Marinos, P. and Hoek, E. (2001). “Estimating the geotechnical properties of heterogeneous rock masses such as Flysch.” Bulletin of Engineering Geology and the Environment, Vol. 60, No. 2, pp. 85–92, DOI: 10.1007/s100640000090.

    Article  Google Scholar 

  • Michalowski, R. L. and Drescher, A. (2009). “Three-dimensional stability of slopes and excavations.” Géotechnique, Vol, 59, No. 10, pp. 839–850, DOI: 10.1680/geot.8.P.136.

    Article  Google Scholar 

  • Michalowski, R. L. and Martel, T. (2011). “Stability charts for 3D failures of steep slopes subjected to seismic excitation.” Journal of geotechnical and geoenvironmental engineering, Vol. 137, No. 2, pp. 183–189, DOI: 10.1061/(ASCE)GT.1943-5606.0000412.

    Article  Google Scholar 

  • Nadukuru, S. S. and Michalowski, R. L. (2013). “Three-dimensional displacement analysis of slopes subjected to seismic loads.” Canadian Geotechnical Journal, Vol. 50, No. 6, pp. 650–66, DOI: 10.1139/cgj-2012-0223.

    Article  Google Scholar 

  • Newmark, N. M. (1965). “Effect of earthquakes on dams and embankments.” Géotechnique, Vol. 15, No. 2, pp. 139–160, DOI: 10.1680/geot.1965.15.2.139.

    Article  Google Scholar 

  • Rabczuk, T. and Belytschko, T. (2004). “Cracking particles: A simplified meshfree method for arbitrary evolving cracks.” International Journal for Numerical Methods in Engineering, Vol. 61, No. 13, pp. 2316–2343, DOI: doi.org/10.1002/nme.1151.

    Article  MATH  Google Scholar 

  • Rabczuk, T., Zi, G., Bordas, S., and Nguyen-Xuan, H. (2010). “A simple and robust three-dimensional cracking-particle method without enrichment.” Computer Methods in Applied Mechanics and Engineering, Vol. 199, Nos. 37–40, pp. 2437–2455, DOI: 10.1016/j.cma.2010.03.031.

    Article  MATH  Google Scholar 

  • Ren, H., Zhuang, X., and Rabczuk, T. (2017). “Dual-horizon peridynamics: A stable solution to varying horizons.” Computer Methods in Applied Mechanics and Engineering, Vol. 318, pp. 762–782, DOI: 10.1016/j.cma.2016.12.031.

    Article  MathSciNet  Google Scholar 

  • Ren, H., Zhuang, X., Cai, Y., and Rabczuk, T. (2016). “Dual-horizon peridynamics.” International Journal for Numerical Methods in Engineering, Vol. 108, No. 12, pp. 1451–1476, DOI: 10.1002/nme.5257.

    Article  MathSciNet  Google Scholar 

  • Saada, Z., Maghous, S., and Garnier, D. (2011). “Seismic bearing capacity of shallow foundations near rock slopes using the generalized Hoek-Brown criterion.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 35, No. 6, pp. 724–748, DOI: 10.1002/nag.929.

    Article  MATH  Google Scholar 

  • Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T., and Rabczuk, T. (2016). “A software framework for probabilistic sensitivity analysis for computationally expensive models.” Advances in Engineering Software, Vol. 100, pp. 19–31, DOI: 10.1016/j.advengsoft.2016.06.005.

    Article  Google Scholar 

  • Saygili, G. and Rathje, E. M. (2008). “Empirical predictive models for earthquake-induced sliding displacements of slopes.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 134, No. 6, pp. 790–803, DOI: 10.1061/(ASCE)1090-0241(2008)134:6(790).

    Article  Google Scholar 

  • Xu, J. S. and Yang, X. L. (2018). “Effects of seismic force and pore water pressure on three dimensional slope stability in nonhomogeneous and anisotropic soil.” KSCE Journal of Civil Engineering, Vol. 22, No. 5, pp. 1720–1729, DOI: 10.1007/s12205-017-1958-y.

    Article  Google Scholar 

  • Xu, J. S., Li, Y. X., and Yang, X. L. (2018). “Seismic and static 3D stability of two-stage slope considering joined influences of nonlinearity and dilatancy.” KSCE Journal of Civil Engineering, DOI: 10.1007/s12205-018-0636-z.

    Google Scholar 

  • Yang, X. L. (2002). Limit analysis method and its application to geotechnical engineering with linear and nonlinear failure criteria, PhD thesis, Central South University, Changsha, China. 2002.

    Google Scholar 

  • Yang, X. L. (2007). “Seismic displacement of rock slopes with nonlinear Hoek-Brown failure criterion.” International Journal of Rock Mechanics and Mining Sciences, Vol. 44, No. 6, pp. 948–953, DOI: 10.1016/j.ijrmms.2007.01.002.

    Article  Google Scholar 

  • Zheng, W., Zhuang, X., Tannant, D. D., Cai, Y., and Nunoo, S. (2014). “Unified continuum/discontinuum modeling framework for slope stability assessment.” Engineering Geology, Vol. 179, pp. 90–101, DOI: 10.1016/j.enggeo.2014.06.014.

    Article  Google Scholar 

  • Zhuang, X., Wang, Q., and Zhu, H. (2017). “Multiscale modelling of hydro-mechanical couplings in quasi-brittle materials.” International Journal of Fracture, Vol. 204, No. 1, pp. 1–27, DOI: 10.1007/s10704-016-0139-1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yang, X. Three-dimensional Seismic Displacement Analysis of Rock Slopes based on Hoek-Brown Failure Criterion. KSCE J Civ Eng 22, 4334–4344 (2018). https://doi.org/10.1007/s12205-018-3022-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-018-3022-y

Keywords

Navigation