Skip to main content
Log in

Pseudo-fluid Particles for Fluid-rigid Body Coupling in SPH

  • Coastal and Harbor Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The present study introduces the concept of pseudo-fluid particles for modeling fluid-rigid body interaction in Smoothed Particle Hydrodynamics (SPH). Such particles obey rigid body dynamics in a fully coupled framework with fluid pressure forces acting as external excitations for the object. The proposed algorithm allows treating the actual rigid body as a hollow shape composed of few layers of pseudo-fluid particles, the mass of which is introduced as an input data, rather than computed by summing up the contribution from individual particles. This decreases the computational cost by reducing the number of particles to be involved in the simulation. A modification is introduced in the discretized mass conservation equation which improves the computational accuracy when the flow is mostly dominated by hydrostatic pressure distribution. To highlight the role of this modification, a buoyant floating object is shown to properly maintain its initial equilibrium over relatively long simulation time. The efficiency of proposed model is then evaluated by reproducing the well-known Scott Russell’s wave generator in three cases, followed by the wedge water entry problem. Comparisons with available experimental measurements demonstrate reasonable agreement in predicting different aspects of generated flow field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antoci, C., Gallati, M., and Sibilla, S. (2007). “Numerical simulation of fluid–structure interaction by SPH.” Computers and Structures, Vol. 85, No. 11, pp. 879–890, DOI: 10.1016/j.compstruc.2007.01.002.

    Article  Google Scholar 

  • Antuono, M., Colagrossi, A., Marrone, S., and Lugni, C. (2011). “Propagation of gravity waves through an SPH scheme with numerical diffusive terms.” Computer Physics Communications, Vol. 182, No. 4, pp. 866–877, DOI: 10.1016/j.cpc.2010.12.012.

    Article  MATH  Google Scholar 

  • Ataie-Ashtiani, B. and Shobeyri, G. (2008). “Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics.” International Journal for Numerical Methods in Fluids, Vol. 56, No. 2, pp. 209–232, DOI: 10.1002/fld.1526.

    Article  MathSciNet  MATH  Google Scholar 

  • Bøckmann, A., Shipilova, O., and Skeie, G. (2012). “Incompressible SPH for free surface flows.” Computers and Fluids, Vol. 67, pp. 138–151, DOI: 10.1016/j.compfluid.2012.07.007.

    Article  MathSciNet  MATH  Google Scholar 

  • Causin, P., Gerbeau, J. F., and Nobile, F. (2005). “Added-mass effect in the design of partitioned algorithms for fluid–structure problems.” Computer Methods in Applied Mechanics and Engineering, Vol. 194, No. 42, pp. 4506–4527, DOI: 10.1016/j.cma.2004.12.005.

    Article  MathSciNet  MATH  Google Scholar 

  • Colagrossi, A. and Landrini, M. (2003). “Numerical simulation of interfacial flows by smoothed particle hydrodynamics.” Journal of Computational Physics, Vol. 191, No. 2, pp. 448–475, DOI: 10.1016/S0021-9991(03)00324-3.

    Article  MATH  Google Scholar 

  • Dalrymple, R. and Rogers, B. (2006). “Numerical modeling of water waves with the SPH method.” Coastal Engineering, Vol. 53, No. 2, pp. 141–147, DOI: 10.1016/j.coastaleng.2005.10.004.

    Article  Google Scholar 

  • Delorme, L., Colagrossi, A., Souto-Iglesias, A., Zamora-Rodriguez, R., and Botia-Vera, E. (2009). “A set of canonical problems in sloshing, Part I: Pressure field in forced roll—comparison between experimental results and SPH.” Ocean Engineering, Vol. 36, No. 2, pp. 168–178, DOI: 10.1016/j.oceaneng.2008.09.014.

    Article  Google Scholar 

  • Ferrari, A., Dumbser, M., Toro, E. F., and Armanini, A. (2009). “A new 3D parallel SPH scheme for free surface flows.” Computers and Fluids, Vol. 38, pp. 1203–1217, DOI: 10.1016/j.compfluid.2008.11.012.

    Article  MathSciNet  MATH  Google Scholar 

  • Gander, W. and Gautschi, W. (2000). “Adaptive quadrature—revisited.” BIT Numerical Mathematics, Vol. 40, No. 1, pp. 84–101, DOI: 10.1023/A:1022318402393.

    Article  MathSciNet  MATH  Google Scholar 

  • Gao, R., Ren, B., Wang, G., and Wang, Y. (2012). “Numerical modelling of regular wave slamming on subface of open-piled structures with the corrected SPH method.” Applied Ocean Research, Vol. 34, pp. 173–186, DOI: 10.1016/j.apor.2011.08.002.

    Article  Google Scholar 

  • Hashemi, M. R., Fatehi, R., and Manzari, M. T. (2012). “A modified SPH method for simulating motion of rigid bodies in Newtonian fluid flows.” International Journal of Non-Linear Mechanics, Vol. 47, No. 6, pp. 626–638, DOI: 10.1016/j.ijnonlinmec.2011.10.007.

    Article  Google Scholar 

  • Hu, X. Y. and Adams, N. A. (2006). “A multi-phase SPH method for macroscopic and mesoscopic flows.” Journal of Computational Physics, Vol. 213, No. 2, pp. 844–861, DOI: 10.1016/j.jcp.2005.09.001.

    Article  MathSciNet  MATH  Google Scholar 

  • Hwang, S. C., Khayyer, A., Gotoh, H., and Park, J. C. (2014). “Development of a fully Lagrangian MPS-based coupled method for simulation of fluid–structure interaction problems.” Journal of Fluids and Structures, Vol. 50, pp. 497–511, DOI: 10.1016/j.jfluidstructs.2014.07.007.

    Article  Google Scholar 

  • Landrini, M., Colagrossi, A., Greco, M., and Tulin, M. P. (2007). “Gridless simulations of splashing processes and near-shore bore propagation.” Journal of Fluid Mechanics, Vol. 591, pp. 183–213, DOI: 10.1017/S0022112007008142.

    Article  MATH  Google Scholar 

  • Liu, G. R. and Liu, M. B. (2003). Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, Singapore.

    Book  MATH  Google Scholar 

  • Liu, M. B., Shao, J., and Chang, J. (2012). “On the treatment of solid boundary in smoothed particle hydrodynamics.” Science China Technological Sciences, Vol. 55, pp. 244–254, DOI: 10.1007/s11431-011-4663-y.

    Article  Google Scholar 

  • Mahdavi, A. and Talebbeydokhti, N. (2011). “Modeling of non-breaking and breaking solitary wave run-up using shock-capturing TVDWAF scheme.” KSCE Journal of Civil Engineering, Vol. 15, No. 6, pp. 945–955, DOI: 10.1007/s12205-011-1030-2.

    Article  Google Scholar 

  • Mahdavi, A. and Talebbeydokhti, N. (2015). “A hybrid solid boundary treatment algorithm for smoothed particle hydrodynamics.” Scientia Iranica. Transaction A, Civil Engineering, Vol. 22, No. 4, pp. 1457–1469.

    Google Scholar 

  • Mahmoudi, A., Hakimzadeh, H., Ketabdari, M. J., Etemadshahidi, A., Cartwright, N., and Abyn, H. (2016). “Weakly-compressible SPH and experimental modeling of periodic wave breaking on a plane slope.” International Journal of Maritime Technology, Vol. 5, pp. 63–76.

    Google Scholar 

  • Marongiu, J. C., Leboeuf, F., Caro, J., and Parkinson, E. (2010). “Free surface flows simulations in Pelton turbines using an hybrid SPHALE method.” Journal of Hydraulic Research, Vol. 48, No. S1, pp. 40–49, DOI: 10.1080/00221686.2010.9641244.

    Article  Google Scholar 

  • Monaghan, J. J., Kos, A., and Issa, N. (2003). “Fluid motion generated by impact.” Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 129, No. 6, pp. 250–259, DOI: 10.1061/(ASCE)0733-950X (2003)129:6(250).

    Article  Google Scholar 

  • Monaghan, J. J. (1994). “Simulating free surface flows with SPH.” Journal of Computational Physics, Vol. 110, No. 2, pp. 399–406, DOI: 10.1006/jcph.1994.1034.

    Article  MathSciNet  MATH  Google Scholar 

  • Monaghan, J. J. (1996). “Gravity currents and solitary waves.” Physica D: Nonlinear Phenomena, Vol. 98, No. 2, pp. 523–533, DOI: 10.1016/0167-2789(96)00110-8.

    Article  MATH  Google Scholar 

  • Monaghan, J. J. and Kos, A. (2000). “Scott Russell’s wave generator.” Physics of Fluids, Vol. 12, No. 3, pp. 622–630, DOI: 10.1063/1.870269.

    Article  MathSciNet  MATH  Google Scholar 

  • Oger, G., Doring, M., Alessandrini, B., and Ferrant, P. (2006). “Twodimensional SPH simulations of wedge water entries.” Journal of Computational Physics, Vol. 213, No. 2, pp. 803–822, DOI: 10.1016/j.jcp.2005.09.004.

    Article  MathSciNet  MATH  Google Scholar 

  • Panizzo, A. (2004). Physical and numerical modelling of subaerial landslide generated waves, Ph.D thesis, Universita degli Studi di L’Aquila.

    Google Scholar 

  • Rafiee, A. and Thiagarajan, K. P. (2009). “An SPH projection method for simulating fluid-hypoelastic structure interaction.” Computer Methods in Applied Mechanics and Engineering, Vol. 198, No. 33, pp. 2785–2795, DOI: 10.1016/j.cma.2009.04.001.

    Article  MATH  Google Scholar 

  • Souli, M. and Benson, D. J. (2010). Arbitrary Lagrangian–Eulerian and Fluid–Structure Interaction: Numerical Simulation. John Wiley, UK.

    Google Scholar 

  • Vandamme, J., Zou, Q., and Reeve, D. E. (2011). “Modeling floating object entry and exit using smoothed particle hydrodynamics.” Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 137, No. 5, pp. 213–224, DOI: 10.1061/(ASCE)WW.1943-5460.0000086.

    Article  Google Scholar 

  • Violeau, D. (2012). Fluid Mechanics and the SPH Method: Theory and Applications. Oxford University Press.

    Book  MATH  Google Scholar 

  • Zhao, R., Faltinsen, O., and Aarsnes, J. (1997). “Water entry of arbitrary two-dimensional sections with and without flow separation.” In Proceedings of the 21st Symposium on Naval Hydrodynamics, pp. 408–423.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mahdavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi, A. Pseudo-fluid Particles for Fluid-rigid Body Coupling in SPH. KSCE J Civ Eng 22, 4194–4204 (2018). https://doi.org/10.1007/s12205-018-2613-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-018-2613-y

Keywords

Navigation