Skip to main content
Log in

Automated and Optimized Sensor Deployment using Building Models and Electromagnetic Simulation

  • Construction Management
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

With the advent of wireless sensing technology and interest in tracking resources, researchers have developed advanced tracking algorithms by using one or more sensor systems for improved accuracy and reliability of tracking. The objective of this research lies in another aspect−deployment−of tracking that has received only little attention until now. The research explores a method for sensor deployment particularly designed for the building in which the sensors are used. To tailor our solution to a specific building, we integrate a building information model with an electromagnetic energy analysis. By using such a model, the system extracts the properties of building materials, which are used as parameters of sensor deployment optimization. Then, we find a method of optimizing the deployment of a Received Signal Strength Indication (RSSI)-based tracking sensors for reducing wireless energy dissipation during the operation of the tracking system. For the numerical validation of the proposed method, the High-Frequency Structural Simulator (HFSS) runs an electromagnetic simulation to generate comparison data of electromagnetic energy flow from optimized sensor deployment and random sensor deployment. The results indicate that the proposed method could produce results that are correlated to the HFSS results. In addition, the method shows clear evidence of a reduction in signal power loss. Finally, optimized sensor deployment through the proposed framework can use signals of electromagnetic energy more effectively and potentially improve the efficiency of the RSSI-based tracking system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cai, H., Andoh, A. R., Su, X., and Li, S. (2014). “A boundary condition based algorithm for locating construction site objects using RFID and GPS.” Advanced Engineering Informatics, Elsevier Ltd, vol. 28, no. 4, pp. 455–468. DOI: 10.1016/j.aei.2014.07.002.

    Article  Google Scholar 

  • Carbonari, A., Giretti, A., and Naticchia, B. (2011). “A proactive system for real-time safety management in construction sites.” Automation in Construction, Elsevier B.V., vol. 20, no. 6, pp. 686–698. DOI: 10.1016/j.autcon.2011.04.019.

    Article  Google Scholar 

  • Chintalapudi, K., Padmanabha Iyer, A., and Padmanabhan, V. N. (2010). “Indoor localization without the pain.” Proc. 16th Annual Int. Conf. on Mobile Computing and Networking, The Association for Computing Machinery (ACM), Chicago, Illinois, USA, pp. 173–184.

    Google Scholar 

  • Cho, C., Park, J., and Kim, K. (2018). “Energy loss in cement-based material for efficient sensor deployment at a site.” Canadian Journal of Civil Engineering, DOI: 10.1139/cjce-2017-0406.

    Google Scholar 

  • Costin, A. M. and Teizer, J. (2015). “Fusing passive RFID and BIM for increased accuracy in indoor localization.” Visualization in Engineering, Springer Nature, vol. 3, no. 1, pp. 1–20. DOI: 10.1186/s40327-015-0030-6.

    Article  Google Scholar 

  • Domingo-Perez, F., Lazaro-Galilea, J. L., Wieser, A., Martin-Gorostiza, E., Salido-Monzu, D., and Llana, A. D. L. (2016). “Sensor placement determination for range-difference positioning using evolutionary multi-objective optimization.” Expert Systems with Applications, Elsevier Ltd, vol. 47, pp. 95–105. DOI: 10.1016/j.eswa.2015.11.008.

    Article  Google Scholar 

  • Escorcia, V., Dávila, M. A., Golparvar-Fard, M., and Niebles, J. C. (2012). “Automated vision-based recognition of construction worker actions for building interior construction operations using RGBD Cameras.” Proc. Construction Research Congress 2012, ASCE, West Lafayette, Indiana, United States, pp. 879–888.

    Chapter  Google Scholar 

  • Friis, H. T. (1946). “A note on a simple transmission formula.” Proc. of the IRE, IEEE, New York, USA, United States, vol. 34, no. 5, pp. 254–256.

    Google Scholar 

  • Golparvar-Fard, M., Bohn, J., Teizer, J., Savarese, S., and Peña-Mora, F. (2011). “Evaluation of image-based modeling and laser scanning accuracy for emerging automated performance monitoring techniques.” Automation in Construction, Elsevier B.V., vol. 20, no. 8, pp. 1143–1155. DOI: 10.1016/j.autcon.2011.04.016.

    Article  Google Scholar 

  • Kim, H., Lee, H.-S., Park, M., Chung, B., and Hwang, S. (2016). “Automated hazardous area identification using laborers’ actual and optimal routes.” Automation in Construction, Elsevier B.V., vol. 65, pp. 21–32. DOI: 10.1016/j.autcon.2016.01.006.

    Article  Google Scholar 

  • Kozlov, M. and Turner, R. (2010). “A comparison of ansoft HFSS and CST microwave studio simulation software for multi-channel coil design and SAR estimation at 7T MRI.” PIERS Online, vol. 6, no. 4, pp. 395–399. DOI: 10.2529/PIERS090902092851.

    Article  Google Scholar 

  • Li, N. and Becerik-Gerber, B. (2011). “Performance-based evaluation of RFID-based indoor location sensing solutions for the built environment.” Advanced Engineering Informatics, Elsevier Ltd, vol. 25, no. 3, pp. 535–546. DOI: 10.1016/j.aei.2011.02.004.

    Article  Google Scholar 

  • Li, N., Becerik-Gerber, B., Krishnamachari, B., and Soibelman, L. (2014a). “A BIM centered indoor localization algorithm to support building fire emergency response operations.” Automation in Construction, Elsevier B.V., vol. 42, pp. 78–89. DOI: 10.1016/j.autcon.2014.02.019.

    Article  Google Scholar 

  • Li, N., Becerik-Gerber, B., and Soibelman, L. (2014b). “Iterative maximum likelihood estimation algorithm: Leveraging building information and sensing infrastructure for localization during emergencies.” Journal of Computing in Civil Engineering, ASCE, vol. 29, no. 6, pp. 4014094, DOI: 10.1061/(ASCE)CP.1943-5487.0000430.

    Article  Google Scholar 

  • Li, H., Chan, G., Wong, J. K. W., and Skitmore, M. (2016a). “Real-time locating systems applications in construction.” Automation in Construction, Elsevier B.V., vol. 63, pp. 37–47. DOI: 10.1016/j.autcon.2015.12.001.

    Article  Google Scholar 

  • Li, H., Yang, X., Wang, F., Rose, T., Chan, G., and Dong, S. (2016b). “Stochastic state sequence model to predict construction site safety states through Real-Time Location Systems.” Safety Science, Elsevier, vol. 84, pp. 78–87. DOI: 10.1016/j.ssci.2015.11.025.

    Article  Google Scholar 

  • Marks, E. and Teizer, J. (2012). “Safety first: real-time proactive equipment operator and ground worker warning and alert system in steel manufacturing.” Iron and Steel Technology, AIST, vol. 9, no. 10, pp. 56–69.

    Google Scholar 

  • Mirotznik, M. S. and Prather, D. (1997). “How to choose electromagnetic software.” IEEE Spectrum, vol. 34, no. 12, pp. 53–58. DOI: 10.1109/6.642969.

    Article  Google Scholar 

  • Montaser, A. and Moselhi, O. (2014). “RFID indoor location identification for construction projects.” Automation in Construction, Elsevier B.V., vol. 39, pp. 167–179. DOI: 10.1016/j.autcon.2013.06.012.

    Article  Google Scholar 

  • Moreno-Salinas, D., Pascoal, A. M., and Aranda, J. (2013). “Optimal sensor placement for multiple target positioning with range-only measurements in two-dimensional scenarios.” Sensors, vol. 13, no. 8, pp. 10674–10710, DOI: 10.3390/s130810674.

    Article  Google Scholar 

  • Nguyen, N. H. and Dogancay, K. (2015). “Optimal sensor placement for Doppler shift target localization.” 2015 IEEE Radar Conference (RadarCon), IEEE, Arlington, VA, USA, pp. 1677–1682.

    Chapter  Google Scholar 

  • Park, J., Chen, J., and Cho, Y. K. (2017a). “Self-corrective knowledgebased hybrid tracking system using BIM and multimodal sensors.” Advanced Engineering Informatics, Elsevier B.V., vol. 32, pp. 126–138. DOI: 10.1016/j.aei.2017.02.001.

    Article  Google Scholar 

  • Park, J. and Cho, Y. K. (2017). “Development and evaluation of a probabilistic local search algorithm for complex dynamic indoor construction sites.” Journal of Computing in Civil Engineering, ASCE, vol. 31, no. 4, pp. 04017015, DOI: 10.1061/(ASCE)CP.1943-5487.0000658.

    Article  Google Scholar 

  • Park, J., Cho, Y. K., and Martinez, D. (2016). “A BIM and UWB integrated mobile robot navigation system for indoor position tracking applications.” Journal of Construction Engineering and Project Management, vol. 6, no. 2, pp. 30–39. DOI: 10.6106/JCEPM.2016.6.2.030.

    Article  Google Scholar 

  • Park, C.-S. and Kim, H.-J. (2013). “A framework for construction safety management and visualization system.” Automation in Construction, Elsevier B. V., vol. 33, pp. 95–103. DOI: 10.1016/j.autcon.2012.09.012.

    Article  Google Scholar 

  • Park, J., Kim, K., and Cho, Y. K. (2016b). “Using BIM Geometric Properties for BLE-based Indoor Location Tracking.” Seoul International Conference on Applied Science and Engineering, Seoul.

    Google Scholar 

  • Park, M.-W., Makhmalbaf, A., and Brilakis, I. (2011). “Comparative study of vision tracking methods for tracking of construction site resources.” Automation in Construction, Elsevier B. V., vol. 20, no. 7, pp. 905–915. DOI: 10.1016/j.autcon.2011.03.007.

    Article  Google Scholar 

  • Park, J., Marks, E., Cho, Y. K., and Suryanto, W. (2015). “Performance Test of wireless technologies for personnel and equipment proximity sensing in work zones.” Journal of Construction Engineering and Management, ASCE, vol. 142, no. 1, pp. 04015049, DOI: 10.1061/(ASCE)CO.1943-7862.0001031.

    Article  Google Scholar 

  • Park, J., Yang, X., Cho, Y. K., and Seo, J. (2017b). “Improving dynamic proximity sensing and processing for smart work-zone safety.” Automation in Construction, Elsevier B.V., vol. 84, pp. 111–120. DOI: 10.1016/j.autcon.2017.08.025.

    Article  Google Scholar 

  • Poynting, J. H. (1884). “On the transfer of energy in the electromagnetic field.” Philosophical Transactions of the Royal Society of London, Royal Society, vol. 175, pp. 343–361.

    Article  MATH  Google Scholar 

  • Pozar, D. M. (2009). Microwave engineering. John Wiley & Sons, New York, USA.

    Google Scholar 

  • Pradhananga, N. and Teizer, J. (2013). “Automatic spatio-temporal analysis of construction site equipment operations using GPS data.” Automation in Construction, Elsevier B.V., vol. 29, pp. 107–122. DOI: 10.1016/j.autcon.2012.09.004.

    Article  Google Scholar 

  • Shahi, A., Aryan, A., West, J. S., Haas, C. T., and Haas, R. C. G. (2012). “Deterioration of UWB positioning during construction.” Automation in Construction, Elsevier B.V., vol. 24, pp. 72–80. DOI: 10.1016/j.autcon.2012.02.009.

    Article  Google Scholar 

  • Su, X., Li, S., Yuan, C., Cai, H., and Kamat, V. R. (2014). “Enhanced boundary condition–Based approach for construction location sensing using RFID and RTK GPS.” Journal of Construction Engineering and Management, ASCE, Vol. 140, No. 10, p. 04014048, DOI: 10.1061/(ASCE)CO.1943-7862.0000889.

    Google Scholar 

  • Taneja, S., Akinci, B., Garrett, J. H., Soibelman, L., and Karimi, H. A. (2016a). “Effects of positioning data quality and navigation models on map-matching of indoor positioning data.” Journal of Computing in Civil Engineering, ASCE, Vol. 30, No. 1, p. 04014113, DOI: 10.1061/(ASCE)CP.1943-5487.0000439.

    Google Scholar 

  • Taneja, S., Akinci, B., Garrett, J. H., and Soibelman, L. (2016b). “Algorithms for automated generation of navigation models from building information models to support indoor map-matching.” Automation in Construction, Elsevier B.V., vol. 61, pp. 24–41. DOI: 10.1016/j.autcon.2015.09.010.

    Article  Google Scholar 

  • Torrent, D. G. and Caldas, C. H. (2009). “Methodology for automating the identification and localization of construction components on industrial projects.” Journal of Computing in Civil Engineering, ASCE, vol. 23, no. 1, pp. 3–13. DOI: 10.1061/(ASCE)0887-3801(2009)23:1(3).

    Article  Google Scholar 

  • Wang, L. C. (2008). “Enhancing construction quality inspection and management using RFID technology.” Automation in Construction, Elsevier B.V., vol. 17, no. 4, pp. 467–479, DOI: 10.1016/j.autcon. 2007.08.005.

    Article  Google Scholar 

  • Wang, J. and Razavi, S. (2016). “Two 4d models effective in reducing false alarms for struck-by-equipment hazard prevention.” Journal of Computing in Civil Engineering, ASCE, Vol. 30, No. 6, p. 04016031, DOI: 10.1061/(ASCE)CP.1943-5487.0000589.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeewoong Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, C., Park, J. & Kim, K. Automated and Optimized Sensor Deployment using Building Models and Electromagnetic Simulation. KSCE J Civ Eng 22, 4739–4749 (2018). https://doi.org/10.1007/s12205-018-1150-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-018-1150-z

Keywords

Navigation