Skip to main content
Log in

High Precision FE Modeling for Predicting Inner Polygon Defect of Hot Rolled Seamless Steel Tubes

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

A high precision FE model is the key basis for cause analysis and overcoming of inner polygon defect of hot rolled seamless steel tubes. In this paper, the viscoelastic-plastic FEM is adopted in order to develop a high precision FE model for predicting the defect of inner polygon. Mechanical properties of tube material under rolling environment is obtained through five sets of high temperature compression tests, thus the viscoelastic-plastic constitutive equation of tube material is regressed and agrees with the tests results. Heat transfer boundary conditions, roll constant speed and contact friction boundary conditions are applied simultaneously on the FE model and thermo-mechanical coupled explicit algorithm is adopted for solution. The precision of the FE model is verified through industry experiments. Results shows the simulated inner wall shape is in good accordance with the experiment results, and the friction force, stress, strain and temperature distribution in the deformation zone are also discussed. It can be concluded that the viscoelastic-plastic FE model is of high precision and can be applied for better analysis of the hot rolling results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bayoumi, L. S. (2003). “Analysis of flow and stresses in a tube stretch-reducing hot rolling schedule.” Int. J. Mech. Sci., Vol. 45, pp. 553–565, DOI: 10.1016/S0020-7403(03)00047-X.

    Article  Google Scholar 

  • Carretero, O. V., Bliznuk, V., and Sanchez, N. (2014). “Analysis of the strengthening mechanisms in pipeline steels as a function of the hot rolling parameters.” Materials Science & Engineering A, Vol. 604, pp. 46–56, DOI: 10.1016/j.msea.2014.02.066.

    Article  Google Scholar 

  • Carvalho, R. N. (2007). “Simulation of the process of hot rolling of seamless tubes.” Proc. 5th international conference on processing and manufacturing of advanced materials, Vancouver, DOI: 10.4028/www.scientific.net/MSF.539-543.4602.

    Google Scholar 

  • Fuat, K., Josef, N., and Robert, A. L. (2010). “Effect of thickness variation on collapse pressure of seamless pipes.” Ocean Engineering, Vol. 37, pp. 11–12, DOI: 10.1016/j.oceaneng.2010.03.014.

    Google Scholar 

  • Jiang, Y. Z. and Tang, H. P. (2015). “Method for improving transverse wall thickness precision of seamless steel tube based on tube rotation.” Journal of Iron and Steel Research International, Vol. 22, pp. 924–930, DOI: 10.1016/S1006-706X(15) 30091–1.

    Article  Google Scholar 

  • Jiang, Y. Z., Tang, H. P., Tang, H. H., Deng, S. B., and Peng, X. (2015). “Explicit FE modelling of tube stretch reduction and analysis of wall thickness variation.” Ironmaking & Steelmaking, Vol. 42, pp. 176–184, DOI: 10.1179/1743281214Y.0000000217.

    Article  Google Scholar 

  • Knysh, P. and Korkolis, Y. P. (2015). “Determination of the fraction of plastic work converted into heat in metals.” Mechanics of Materials, Vol. 86, pp. 71–80, DOI: 10.1016/j.mechmat.2015.03.006.

    Article  Google Scholar 

  • Li, H., Yang, H., and Zhang, Z. (2014). “Hot tube-forming. In Comprehensive materials processing.” Edited by Saleem H, Gilmar FB, Chester JVT and Bekir Y, Elsevier, Oxford, pp. 321–350, DOI: 10.1016/B978-0-08-096532-1.00525-2.

    Google Scholar 

  • Li, J. H. and Yu, H. (2012). “Numerical simulation of seamless Tube’s stretch reducing process.” Master. Sci. Forum, Vols. 704–705, pp. 155–159, DOI: 10.4028/MSF.704-705.155.

    Article  Google Scholar 

  • Li, S. Z., Bao, H. Y., and Zhang, Z. C. (2010). “Research on design method of polygonal roll pass for stretch reduced seamless tubes.” Master Sci Forum, Vol. 654–656, pp. 1614–1617, DOI: 10.4028/MSF.654–656.1614.

    Article  Google Scholar 

  • Li, S. Z., Zhang, Z. C., Bao, H. Y., and Zhou, Z. Y. (2010). “Influence of roll speed schedule on transverse wall thickness evenness of shell elongated by mandrel mill.” Materials Science Forum, Vol. 654–656, pp. 1311–1314, DOI: 10.4028/MSF.654-656.1311.

    Article  Google Scholar 

  • Pater, Z., Kazanecki, J., and Bartnicki, J. (2006). “Three dimensional thermo-mechanical simulation of the tube forming process in Diescher’s mill.” J. Mater. Process Technol., Vol. 177, pp. 167–170, DOI: 10.1016/j.jmatprotec.2006.03.205.

    Article  Google Scholar 

  • Pirling, T., Carrado, A., and Palkowski, H. (2011). “Residual stress distribution in seamless tubes determined experimentally and by FEM.” In: Procedia Eng., pp. 3080–3085, DOI: 10.1016/j.proeng.2011.04.510.

    Google Scholar 

  • Seyed, A. N., Elham, M., Mohammad, M. S., and Mohsen, M. (2016). “Mechanical response of buried High-Density Polyethylene pipelines under normal fault motions.” KSCE Journal of Civil Engineering, Vol. 20, No. 6, pp. 2253–2261, DOI: 10.1007/s12205-015-0695-3DO.

    Article  Google Scholar 

  • Shi, D. Q., Gao, G. L., Xiao, P., and Gao, Z. W. (2012). “Defects detection system for steel tubes based on electromagnetic acoustic technology.” Procedia Engineering, Vol. 29, pp. 252–256, DOI: 10.1016/proeng.2011.12.702.

    Article  Google Scholar 

  • Tu, W. B., Tang, Y., Hu, J. Y., Wang, Q. H., and Lu, L. S. (2015). “Heat transfer and friction characteristics of laminar flow through a circular tube with small pipe inserts.” International Journal of Thermal Sciences, Vol. 96, pp. 94–101, DOI: 10.1016/j.ijthermalsci.2015.04.013.

    Article  Google Scholar 

  • Wang, F. J., Shuang, Y. H., and Hu, J. H. (2014). “Explorative study of tandem skew rolling process for producing seamless steel tubes.” JMPT, Vol. 214, pp. 1597–1604, DOI: 10.1016/j.jmatprotec.2014.03.002.

    Google Scholar 

  • Xu, Z. Q., Du, F. S., and Wang, M. T. (2007). “The simulation study of the linear mark generating process in the stretch reducing.” J. Mater. Process Technol., Vols. 187–188, pp. 373–377, DOI: 10.1016/j.jmatprotec.2006.11.073.

    Article  Google Scholar 

  • Yin, Y. D., Li, S. Z., Xu, J., Li, Y. H., Long, G. M., and Deng, P. A. (2010). “Analysis of transverse wall thickness precision of steel tube rolled by semi-floating mandrel mill.” Materials Science Forum, Vols. 654–656, pp. 1510–1512, DOI: 10.4028 /AMR.97-101.3097.

    Google Scholar 

  • Yu, H. L., Liu, X. H., Zhao, X. M., and Kusaba, Y. (2006). “FEM analysis for V-H rolling process by updating geometric method.” Journal of Materials Processing Technology, Vol. 180, pp. 323–327, DOI: 10.1016/j.jmatprotec.2006.07.012.

    Article  Google Scholar 

  • Yu, H., Du, F. S., and Wang, F. X. (2011). “Finite element model development and application on stretch reducing process of seamless tube.” Chin J. Mech Eng., Vol. 47, pp. 74–79, DOI: 10.3901/JME.2011.22.074.

    Article  Google Scholar 

  • Zhao, C. J., Liu, Y. F., Bai, L., Wang, N., and Shuang, Y. H. (2016). “Stretch reduction of seamless steel tube by skew rolling and its numerical simulation.” Metallurgical Research and Technology, Vol. 113, No. 3, pp. 307–311, DOI: 10.1051/metal/2016009.

    Article  Google Scholar 

  • Zhou, Y., Chen, J. L., Zhao, C. J., and Shuang, Y. H. (2012). “Seamless tube in stretch reducing 3-d thermal-mechanical coupling analysis.” Adv Mater Res, Vol. 572, pp. 198–202, DOI: 10.4028 /AMR.572.198.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Zheng Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, YZ., Li, XJ., Zhang, XP. et al. High Precision FE Modeling for Predicting Inner Polygon Defect of Hot Rolled Seamless Steel Tubes. KSCE J Civ Eng 22, 4445–4453 (2018). https://doi.org/10.1007/s12205-018-1014-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-018-1014-6

Keywords

Navigation