Skip to main content
Log in

Foulant–foulant Interaction of Combined Micro-particulate and Organic Fouling on a Ceramic Membrane

  • Environmental Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

In this study, filtration performance and fouling tendency of organic matters mixed with micro-particles on ceramic microfiltration membrane were investigated by using a pilot filtration system. In the study, four types of organic matters (Humic Acid (HA); Bovine Serum Albumins (BSA); Sodium Alginate (SA); and Octanoic Acid (OA)) and two different sizes micro-particles (0.2 μm and 0.4 μm) were used as the representative organic and particulate foulants in secondary wastewater, respectively. The fouling mechanism of HA corresponded to pore blocking while fouling occurred by BSA and SA due to its adsorption on to the membrane pore adsorption and gel formation inside the membrane pore, respectively. The OA formed a thin hydrophilic layer that reduced the interaction between particles and the membrane and improved the permeate flux. When particles present in the solution, they were found inside the cake layers formed by organic matters on the ceramic membrane. These particles made the cake layers more porous. This helped in increasing the filtration time and the recovery rate of the membrane after physical backwashing. Conversely, particles were the main factors that create a flux decline in the filtration of OA on the ceramic membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ang, W. S. and Elimelech, M. (2008). “Fatty acid fouling of reverse osmosis membranes: Implications for wastewater reclamation.” Water Res., Vol. 42, No. 16, 4393–4403, DOI: 10.1016/j.watres. 2008.07.032.

    Article  Google Scholar 

  • Brinck, J., Jönsson, A. S., Jönsson, B., and Lindau, J. (2000). “Influence of pH on the adsorptive fouling of ultrafiltration membranes by fatty acid.” J. Memb. Sci., Vol. 164, Nos. 1–2, pp. 187–194, DOI: 10.1016/S0376-7388(99)00212-4.

    Article  Google Scholar 

  • De Angelis, L. and De Cortalezzi, M. M. F. (2013). “Ceramic membrane filtration of organic compounds: Effect of concentration, pH, and mixtures interactions on fouling.” Sep. Purif. Technol., Vol. 118, pp. 762–775, DOI: 10.1016/j.seppur.2013.08.016.

    Article  Google Scholar 

  • De Angelis, L. and De Cortalezzi, M. M. F. (2013). “Ceramic membrane filtration of organic compounds: Effect of concentration, pH, and mixtures interactions on fouling.” Separation and Purification Technology, Vol. 118, pp. 762–775, DOI: 10.1016/j.seppur.2013.08.016.

    Article  Google Scholar 

  • de la Casa, E. J., Guadix, A., Ibáñez, R., Camacho, F., and Guadix, E. M. (2008). “A combined fouling model to describe the influence of the electrostatic environment on the cross-flow microfiltration of BSA.” J. Memb. Sci., Vol. 318, Nos. 1–2, pp. 247–254, DOI: 10.1016/j.memsci.2008.02.047.

    Article  Google Scholar 

  • Ferebee, R., Hakem, I. F., Koch, A., Chen, M., Wu, Y., Loh, D., Wilson, D. C., Poole, J. L., Walker, J. P., Fytas, G., and Bockstaller, M. R. (2016). “Light scattering analysis of mono-and multi-pegylated bovine serum albumin in solution: Role of composition on structure and interactions.” J. Phys. Chem. B., Vol. 120, No. 20, 4591–4599, DOI: 10.1021/acs.jpcb.6b03097.

    Article  Google Scholar 

  • García-Molina, V., Lyko, S., Esplugas, S., Wintgens, T., and Melin, T. (2006). “Ultrafiltration of aqueous solutions containing organic polymers.” Desalination, Vol. 189, Nos. 1–3, pp. 110–118.

    Article  Google Scholar 

  • Hashino, M., Hirami, K., Katagiri, T., Kubota, N., Ohmukai, Y., Ishigami, T., Maruyama, T., and Matsuyama, H. (2011). “Effects of three natural organic matter types on cellulose acetate butyrate microfiltration membrane fouling.” J. Memb. Sci., Vol. 379, Nos. 1–2, pp. 233–238, DOI: 10.1016/j.memsci.2011.05.068.

    Article  Google Scholar 

  • Hermans, P. H. and Bredée, H. L. (1935). “Zur Kenntnis der Filtrationsgesetze.” Recueil des Travaux Chimiques des Pays-Bas, Vol. 54, No. 9, 680–700, DOI: 10.1002/recl.19350540902.

    Article  Google Scholar 

  • Hofs, B., Ogier, J., Vries, D., Beerendonk, E. F., and Cornelissen, E. R. (2011). “Comparison of ceramic and polymeric membrane permeability and fouling using surface water.” Separation and Purification Technology, Vol. 79, No. 3, 365–374, DOI: 10.1016/j.seppur. 2011.03.025.

    Article  Google Scholar 

  • Jalanni, N. A., Abu Seman, M. N., and Faizal, C. K. M. (2013). “Investigation of new polyester nanofiltration (NF) membrane fouling with humic acid solution.” J. Teknol. Sciences Eng., Vol. 65, No. 4, 69–72, DOI: 10.11113/jt.v65.2331.

    Google Scholar 

  • Jarusutthirak, C., Amy, G., and Croué, J. P. (2002). “Fouling characteristics of wastewater effluent organic matter (EfOM) isolates on NF and UF membranes.” Desalination, Vol. 145, Nos. 1–3, pp. 247–255, DOI: 10.1016/S0011-9164(02)00419-8.

    Article  Google Scholar 

  • Kawahigashi, M., Sumida, H., and Yamamoto, K. (2005). “Size and shape of soil humic acids estimated by viscosity and molecular weight.” J. Colloid Interface Sci., Vol. 284, No. 2, 463–469, DOI: 10.1016/j.jcis.2004.10.023.

    Article  Google Scholar 

  • Koltuniewicz, A. (2010). Comprehensive Membrane Science and Engineering, 1st ed., Elserier Science, Netherlands, DOI: 10.1016/B978-0-08-093250-7.00029-3.

    Google Scholar 

  • Kuo, D. H. W., Simmons, F. J., Blair, S., Hart, E., Rose, J. B., and Xagoraraki, I. (2010). “Assessment of human adenovirus removal in a full-scale membrane bioreactor treating municipal wastewater.” Water Res., Vol. 44, No. 5, 1520–1530, DOI: 10.1016/j.watres.2009.10.039.

    Article  Google Scholar 

  • Li, Q., Xu, Z., and Pinnau, I. (2007). “Fouling of reverse osmosis membranes by biopolymers in wastewater secondary effluent: Role of membrane surface properties and initial permeate flux.” J. Memb. Sci., Vol. 290, Nos. 1–2, pp. 173–181, DOI: 10.1016/j.memsci.2006.12.027.

    Article  Google Scholar 

  • Lindau, J., Jönsson, A. S., and Wimmerstedt, R. (1995). “The influence of a low-molecular hydrophobic solute on the flux of polysulphone ultrafiltration membranes with different cut-off.” J. Memb. Sci., Vol. 106, Nos. 1–2, pp. 9–16, DOI: 10.1016/0376-7388(95)00072-K.

    Article  Google Scholar 

  • Mobed-Miremadi, M., Djomehri, S., Keralapura, M., and McNeil, M. (2014). “Fickian-based empirical approach for diffusivity determination in hollow alginate-based microfibers using 2D fluorescence microscopy and comparison with theoretical predictions.” Materials (Basel), Vol. 7, No. 12, 7670–7688, DOI: 10.3390/ma7127670.

    Article  Google Scholar 

  • Mueller, U. (2008). Ceramic membrane applications for spent filter backwash water treatment, Area 20, Techneau, Lebanon.

    Google Scholar 

  • Muheem, A., Shakeel, F., Jahangir, M. A., Anwar, M., Mallick, N., Jain, G. K., Warsi, M. H., Ahmad, F. J. (2014). “A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives.” Saudi Pharm. J., Vol. 24, No. 4, 413–428, DOI: 10.1016/j.jsps.2014.06.004.

    Article  Google Scholar 

  • Pramanik, B. K., Roddick, F. A., and Fan, L. (2015). “Treatment of secondary effluent with biological activated carbon to reduce fouling of microfiltration membranes caused by algal organic matter from Microcystis aeruginosa.” J. Memb. Sci., Vol. 496, pp. 125–131, DOI: 10.1016/j.memsci.2015.08.063.

    Article  Google Scholar 

  • Schippers, J. C. and Verdouw, J. (1980). “The modified fouling index, a method of determining the fouling characteristics of water.” Desalination, Vol. 32, pp. 137–148, DOI: 10.1016/S0011-9164(00)86014-2.

    Article  Google Scholar 

  • Schippers, J. C. and Verdouw, J. (1980). “The modified fouling index, a method of determining the fouling characteristics of water.” Desalination, Vol. 32, pp. 137–148, DOI: 10.1016/S0011-9164(00)86014-2.

    Article  Google Scholar 

  • Surel, O. and Famelart, M. H. (1997). “Fouling of ceramic membranes during microfiltration of model solutions.” Bioseparation, Vol. 7, No. 1, 1–7, DOI: 10.1023/A:1007920301832.

    Article  Google Scholar 

  • Vermeer, A. W. P. and Koopal, L. K. (1998). “Adsorption of humic acids to mineral particles. 2. Polydispersity effects with polyelectrolyte adsorption.” Langmuir, Vol. 14, No. 15, 4210–4216, DOI: 10.1021/la970836o.

    Article  Google Scholar 

  • Wang, Y., Li, X., Wu, C., Zhao, Y., Gao, B.-Y., and Yue, Q. (2014). “The role of sodium alginate in improving floc size and strength and the subsequent effects on ultrafiltration membrane fouling.” Environmental Technology, Vol. 35, No. 1, 10–17, DOI: 10.1080/09593330.2013.800589.

    Article  Google Scholar 

  • Wu, P., Xu, Y., Huang, Z., and Zhang, J. (2015). “A review of preparation techniques of porous ceramic membranes.” J. Ceram. Process. Res., Vol. 16, No. 1, 102–106.

    Google Scholar 

  • Xiao, P., Xiao, F., Zhang, W., Zhao, B., and Wang, D. (2014). “Insight into the combined colloidal-humic acid fouling on the hybrid coagulation microfiltration membrane process: The importance of aluminum.” Colloids Surfaces A Physicochem. Eng. Asp., Vol. 461, pp. 98–104, DOI: 10.1016/j.colsurfa.2014.07.033.

    Article  Google Scholar 

  • Xie, M., Nghiem, L. D., Price, W. E., Elimelech, M. (2014). “Impact of organic and colloidal fouling on trace organic contaminant rejection by forward osmosis: Role of initial permeate flux.” Desalination, Vol. 336, pp. 146–152, DOI: 10.1016/j.desal.2013.12.037.

    Article  Google Scholar 

  • Ye, Y., Le Clech, P., Chen, V., Fane, A. G., and Jefferson, B. (2005). “Fouling mechanisms of alginate solutions as model extracellular polymeric substances,” Desalination, Vol. 175, pp. 7–20, DOI: 10.1016/j.desal.2004.09.019.

    Article  Google Scholar 

  • Yuan, W. and Zydney, A. L. (1999). “Humic acid fouling during microfiltration.” J. Memb. Sci., Vol. 157, No. 1, 1–12, DOI: 10.1016/S0376-7388(98)00329-9.

    Article  Google Scholar 

  • Zavarzina, A. G., Vanifatova, N. G., and Stepanov, A. A. (2008). “Fractionation of humic acids according to their hydrophobicity, size, and charge-dependent mobility by the salting-out method.” Eurasian Soil Sci., Vol. 41, No. 12, 1294–1301, DOI: 10.1134/S1064229308120065.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Am Jang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, M.H., Kim, KJ. & Jang, A. Foulant–foulant Interaction of Combined Micro-particulate and Organic Fouling on a Ceramic Membrane. KSCE J Civ Eng 22, 4814–4825 (2018). https://doi.org/10.1007/s12205-018-0611-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-018-0611-8

Keywords

Navigation