Skip to main content
Log in

Improved Fruit Fly Optimization Algorithm Incorporating Tabu Search for Optimizing the Selection of Elements in Trusses

  • Information Technology
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

In order to find a more effective method for the structural optimization, an improved fruit fly Optimization Algorithm was proposed. The dynamic adjustment search, the inertia weight function and the tabu search theory were employed to overcome the premature flaw of the basic algorithm. Then, the improved algorithm was introduced to the structural optimization of the tube- type trestle. After the setup of the optimization model, the improved algorithm was used. Optimization results and comparison with other algorithms show that the stability of improved fruit fly Optimization Algorithm is apparently improved and the efficiency is obviously remarkable. This study provides a more effective solution to structural optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azamirad, G. and Arezoo, B. (2016). “Structural design of stamping die components using bi-directional evolutionary structural optimization method.” International Journal of Advanced Manufacturing Technology, Vol. 87, Nos. 1–4, pp. 969–979, DOI: 10.1007/s00170-016-8344-7.

    Article  Google Scholar 

  • Babalik, A., Iscan, H., Babaoglu, I., and Gündüz, M. (2017). “An improvement in fruit fly optimization algorithm by using sign parameters.” Soft Computing, Vol. 2, 1–17, DOI: 10.1007/s00500-017-2733-1.

    Google Scholar 

  • Cheng, J. and Fournier, R. (2004). “Structural optimization of atomic clusters by tabu search in descriptor space.” Theoretical Chemistry Accounts Theory Computation & Modeling, Vol. 112, No. 1, 7–15, DOI: 10.1007/s00214-003-0552-1.

    Article  Google Scholar 

  • Crawford, B., Soto, R., Torres-Rojas, C., Peña, C., Riquelme-Leiva, M., Misra, S., Johnson, F., and Paredes, F. (2015). A Binary Fruit Fly Optimization Algorithm to Solve the Set Covering Problem, translated by, pp. 411–420, DOI: 10.1007/978-3-319-21410-8_32.

    Google Scholar 

  • Du, T. S., Ke, X. T., Liao, J. G., and Shen, Y. J. (2018). “DSLC-FOA: improved fruit fly optimization algorithm for application to structural engineering design optimization problems.” Applied Mathematical Modelling, Vol. 55, 314–339, DOI: 10.1016/j.apm.2017.08.013.

    Article  MathSciNet  Google Scholar 

  • El-Telbany, M. E. (2016). Improving the Predictability of GRNN using fruit fly optimization and PCA: The Nile Flood Forecasting, Springer International Publishing, USA.

    Google Scholar 

  • Erbatur, F., Hasançebi, O., Tütüncü, I., and Kiliç, H. (2000). “Optimal design of planar and space structures with genetic algorithms.” Computers & Structures, Vol. 75, No. 2, 209–224, DOI: 10.1016/S0045-7949(99)00084-X.

    Article  Google Scholar 

  • Gholizadeh, S. and Poorhoseini, H. (2015). “Optimum design of steel frame structures by a modified Dolphin echolocation algorithm.” Structural Engineering & Mechanics, Vol. 55, No. 3, 535–554, DOI: 10.12989/sem.2015.55.3.535.

    Article  Google Scholar 

  • Gholizadeh, S. and Salajegheh, E. (2010). “Optimal design of structures for earthquake loading by self organizing radial basis function neural Networks.” Advances in Structural Engineering, Vol. 13, No. 2, 339–356, DOI: 10.1260/1369-4332.13.2.339.

    Article  Google Scholar 

  • Gholizadeh, S. and Seyedpoor, S. M. (2011). “Shape optimization of arch dams by metaheuristics and neural networks for frequency constraints.” Scientia Iranica, Vol. 18, No. 5, 1020–1027, DOI: 10.1016/j.scient.2011.08.001.

    Article  Google Scholar 

  • Gholizadeh, S. and Shahrezaei, A. M. (2015). “Optimal placement of steel plate shear walls for steel frames by bat algorithm.” Structural Design of Tall & Special Buildings, Vol. 24, No. 1, 1–18, DOI: 10.1002/tal.1151.

    Article  Google Scholar 

  • Han, J. and Liu, C. (2013). “Adaptive chaos fruit fly optimization algorithm.” Journal of Computer Applications, Vol. 33, No. 5, 1313–1316, DOI: 10.3724/SP.J.1087.2013.01313.

    Article  MathSciNet  Google Scholar 

  • Hasançebi, O., Teke, T., and Pekcan, O. (2013). A bat-inspired algorithm for structural optimization, Pergamon Press, Inc., UK, DOI: 10.1016/j.compstruc.2013.07.006.

    Google Scholar 

  • Hou, J. Y. and Wang, B. (2014). “A kind of diminishing step fruit fly optimization algorithm.” Applied Mechanics & Materials, Vol. 487, 687–691, DOI: 10.4028/www.scientific.net/AMM.487.687.

    Article  Google Scholar 

  • Jia, L. I., Liu, T., Xingyuan, L. I., Xing, D., Qian, L. I., Jiang, D., and Xiao, J. (2014). “Application of improved particle swarm-tabu search algorithm in multi-objective reactive power optimization.” Electric Power Automation Equipment, Vol. 34, No. 8, 71–77, DOI: 10.3969/j.issn.1006-6047.2014.08.013.

    Google Scholar 

  • Kang, S. L., Zong, W. G., Lee, S. H., and Bae, K. W. (2005). “The harmony search heuristic algorithm for discrete structural optimization.” Engineering Optimization, Vol. 37, No. 7, 663–684, DOI: 10.1080/03052150500211895.

    Article  MathSciNet  Google Scholar 

  • Kaveh, A. and Bakhshpoori, T. (2016). “A new metaheuristic for continuous structural optimization: Water evaporation optimization.” Structural & Multidisciplinary Optimization, Vol. 54, No. 1, 23–43, DOI: 10.1007/s00158-015-1396-8.

    Article  Google Scholar 

  • Kitajima, H., Kitajima, H., Watson, B. C., Watson, B. C., and Watson, B. C. (2016). “Structural optimization methods of nonlinear static analysis with contact and its application to design lightweight gear box of automatic transmission of vehicles.” Structural & Multidisciplinary Optimization, Vol. 53, No. 6, 1383–1394, DOI: 10.1007/s00158-015-1369-y.

    Article  Google Scholar 

  • Li, D., Zhang, W., and Automation, S. O. (2015). “Double subgroups fruit fly optimization algorithm for solving 0–1 knapsack problem.” Application Research of Computers, DOI: 10.3969/j.issn.1001-3695.2015.11.016.

    Google Scholar 

  • Li, F., Tang, H. S., Xue, S. T., Wang, Y., and Chen, R. (2009). “Application of a particle swarm optimization algorithm in truss structure optimal design.” Journal of Civil Architectural & Environmental Engineering, Vol. 31, No. 1, 7–12, DOI: 1674-4764(2009).1-0007-06.

    Google Scholar 

  • Li, L. and Khandelwal, K. (2015). An adaptive quadratic approximation for structural and topology optimization, Pergamon Press, Inc., UK.

    Google Scholar 

  • Mitic, M., Vukovic, N., Petrovic, M., and Miljkovic, Z. (2015). “Chaotic fruit fly optimization algorithm.” Knowledge-Based Systems, Vol. 89, No. C, pp. 446–458, DOI: 10.1016/j.knosys.2015.08.010.

    Article  Google Scholar 

  • Mohanty, B. and Hota, P. K. (2015). “Comparative performance analysis of fruit fly optimisation algorithm for multi-area multi-source automatic generation control under deregulated environment.” Generation Transmission & Distribution Iet, Vol. 9, No. 14, 1845–1855, DOI: 10.1049/iet-gtd.2015.0284.

    Article  Google Scholar 

  • Mousavi, S. M., Alikar, N., and Niaki, S. T. A. (2016). An improved fruit fly optimization algorithm to solve the homogeneous fuzzy series–parallel redundancy allocation problem under discount strategies, Springer-Verlag, Germany.

    Google Scholar 

  • Mousavi, S. M., Alikar, N., Niaki, S. T. A., and Bahreininejad, A. (2015). “Optimizing a location allocation-inventory problem in a twoechelon supply chain network.” Computers & Industrial Engineering, Vol. 87, No. C, pp. 543–560, DOI: 10.1016/j.cie.2015.05.022.

    Article  Google Scholar 

  • Mousavi, S. M., Tavana, M., Alikar, N., and Zandieh, M. (2017). “A tuned hybrid intelligent fruit fly optimization algorithm for fuzzy rule generation and classification.” Neural Computing & Applications, In Press, pp. 1–13, DOI: 10.1007/s00521-017-3115-4.

    Google Scholar 

  • Mousin, L., Jourdan, L., Marmion, M. E. K., and Dhaenens, C. (2016). Feature selection using tabu search with learning memory: Learning tabu search, Springer International Publishing, USA.

    Google Scholar 

  • Pan, W. T. (2012). “A new fruit fly optimization algorithm: Taking the financial distress model as an example.” Knowledge-Based Systems, Vol. 26, No. 2, 69–74, DOI: 10.1016/j.knosys.2011.07.001.

    Article  Google Scholar 

  • Poongothai, M. and Rajeswari, A. (2016). A hybrid ant colony tabu search algorithm for solving task assignment problem in heterogeneous processors, pp. 468–485, DOI: 10.1007/978-81-322-2674-1_1.

    Google Scholar 

  • Rajendran, C. and Ziegler, H. (2004). “Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs.” European Journal of Operational Research, Vol. 155, No. 2, 426–438, DOI: 10.1016/S0377-2217(02)00908-6.

    Article  MathSciNet  MATH  Google Scholar 

  • Rojas-Labanda, S. and Stolpe, M. (2015). “Benchmarking optimization solvers for structural topology optimization.” Structural & Multidisciplinary Optimization, Vol. 52, No. 3, pp. 527–547, DOI: 10.1007/s00158-015-1250-z.

    Article  MathSciNet  Google Scholar 

  • Schmit, L. A. and Farshi, B. (1973). “Some approximation concepts for structural synthesis.” AIAA Journal, Vol. 12, No. 5, 692–699, DOI: 10.2514/3.49321.

    Article  Google Scholar 

  • Seghir, F. and Khababa, A. (2016). “A hybrid approach using genetic and fruit fly optimization algorithms for QoS-aware cloud service composition.” Journal of Intelligent Manufacturing, pp. 1–20, DOI: 10.1007/s10845-016-1215-0.

    Google Scholar 

  • Shan, D., Cao, G. H., and Dong, H. J. (2013). “LGMS-FOA: An improved fruit fly optimization algorithm for solving optimization problems.” Mathematical Problems in Engineering, 2013, (2013–9–18), Vol. 2013, No. 7, 1256–1271, DOI: 10.1155/2013/108768.

    MATH  Google Scholar 

  • Shirazi, M. Z., Pamulapati, T., Mallipeddi, R., and Veluvolu, K. C. (2017). Particle swarm optimization with ensemble of inertia weight strategies, International Conference in Swarm Intelligence. Springer, Cham, pp. 140–147.

    Google Scholar 

  • Sivapuram, R., Dunning, P. D., and Kim, H. A. (2016). “Simultaneous material and structural optimization by multiscale topology optimization.” Structural & Multidisciplinary Optimization, Vol. 54, No. 5, 1267–1281, DOI: 10.1007/s00158-016-1519-x.

    Article  MathSciNet  Google Scholar 

  • Soto, B. G. D., Rosarius, A., Rieger, J., Chen, Q., and Adey, B. T. (2017). Using a tabu-search algorithm and 4d models to improve construction project schedules, Creative Construction Conference.

    Google Scholar 

  • Stephens, N., Hurley, S., and Moutinho, L. (2015). Solving optimisation problems in marketing using tabu search, Springer International Publishing.

    Book  Google Scholar 

  • Szczypta, J. and Lapa, K. (2016). Aspects of structure selection and parameters tuning of control systems using hybrid genetic-fruit fly algorithm, Springer International Publishing, USA.

    Google Scholar 

  • Trelea, I. C. (2003). The particle swarm optimization algorithm: Convergence analysis and parameter selection, Elsevier North-Holland, Inc.

    MATH  Google Scholar 

  • Wang, H. U. and Zhi-Shu, L. I. (2007). “A simpler and more effective particle swarm optimization algorithm.” Journal of Software, Vol. 18, No. 4, 861–868, DOI: 10.1360/jos180861.

    Article  MATH  Google Scholar 

  • Wang, Y. and Coltd, O. C. (2016). “Study on optimization of civil engineering building structure design.” Journal of Henan Science & Technology, DOI: 1003-5168(2016).0-0112-02.

    Google Scholar 

  • Wang, Y. L. and Wei-Ji, L. I. (2005). “Particle swarm optimization and its application to structural optimum design.” Mechanical Science & Technology, DOI: 1003-8728(2005).2-0248-05.

    Google Scholar 

  • Whitley, D. (1994). “A genetic algorithm tutorial.” Statistics & Computing, Vol. 4, No. 2, 65–85, DOI: 10.1017/CBO9781107415324.004.

    Article  Google Scholar 

  • Xiao-Wen, W. U. and Qing, L. I. (2013). “Research of optimizing performance of fruit fly optimization algorithm and five kinds of intelligent algorithm.” Fire Control & Command Control, DOI: 1002-0640(2013).4-0017-04.

    Google Scholar 

  • Xiao, C., Hao, K., and Ding, Y. (2015). “An improved fruit fly optimization algorithm inspired from cell communication mechanism.” Mathematical Problems in Engineering, 2015, (2015-3-2), 2015, pp. 1–15, DOI: 10.1155/2015/492195.

    Google Scholar 

  • Yang, M., Liu, N. B., and Liu, W. (2017). “Image 1D OMP sparse decomposition with modified fruit-fly optimization algorithm.” Cluster Computing, Vol. 20, No. 1, 1–8, DOI: 10.1007/s10586-017-0966-5.

    Article  MathSciNet  Google Scholar 

  • Zargham, S., Ward, T. A., Ramli, R., and Badruddin, I. A. (2016). “Topology optimization: A review for structural designs under vibration problems.” Structural & Multidisciplinary Optimization, Vol. 53, No. 6, 1157–1177, DOI: 10.1007/s00158-015-1370-5.

    Article  MathSciNet  Google Scholar 

  • Zhang, Y., Cui, G., Wu, J., Pan, W. T., and He, Q. (2016). “A novel multi-scale cooperative mutation fruit fly optimization Algorithm.” Knowledge-Based Systems, Vol. 114, 24–35, DOI: 10.1016/j.knosys.2016.09.027.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yancang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lian, S. Improved Fruit Fly Optimization Algorithm Incorporating Tabu Search for Optimizing the Selection of Elements in Trusses. KSCE J Civ Eng 22, 4940–4954 (2018). https://doi.org/10.1007/s12205-017-2000-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-2000-0

Keywords

Navigation