KSCE Journal of Civil Engineering

, Volume 22, Issue 7, pp 2451–2463 | Cite as

Experimental Investigation on the Fatigue Behaviour of Heat-Treated Tubular T-Joints

  • Hazem Samih Mohamed
  • Fei Gao
  • Xing-Quan Guan
  • Hong Ping Zhu
Structural Engineering


The stress distribution along the weld toe (SCF test) and the fatigue life of tubular T-joints (Fatigue test) were experimentally investigated in this study. Three specimens with identical geometric properties were tested to failure under fatigue cyclic loading at the brace end. Prior to the loading tests procedure, SCF and Fatigue tests, two specimens went through one cycle of heating and cooling naturally. The SCF test results showed that the maximum Stress Concentration Factor (SCF) occurred at the chord saddle for all the specimens. The fatigue cracks were initiated at the chord saddles of the three tested specimens. The fatigue test results showed that the fatigue life was longer the higher the target maximum temperature was. The development of the crack aspect ratio with the normalised crack length was discussed among the specimens. Finally, the fatigue life results obtained from the experiment compared with those from CIDECT and API guidelines.


tubular T-joint Post-fire stress concentration factors fatigue life 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American Welding Society (AWS) (2010). Structural welding codesteel, AWS D1.1/D1.1M.Google Scholar
  2. American Petroleum Institute (API) (2000). RP2A-LRFD Recommended practice for planning, designing and constructing fixed offshore structures, 21st ed.Google Scholar
  3. Chang, E. and Dover, W. (1999). “Prediction of stress distributions along the intersection of tubular Y and T-joints.” International Journal of Fatigue, vol. 21, no. 4, pp. 361–381, DOI: 10.1016/S0142-1123(98)00083-8.CrossRefGoogle Scholar
  4. Chiew, S. P., Lee, C. K., Lie, S. T., and Ji, H. L. (2007). “Fatigue behaviors of square-to-square hollow section T-joint with corner crack. I: Experimental studies.” Engineering Fracture Mechanics, vol. 74, no. 5, pp. 703–720, DOI: 10.1016/j.engfracmech.2006. 06.022.CrossRefGoogle Scholar
  5. Chiew, S. P., Lie, S. T., Lee, C. K., and Huang, Z. W. (2004). “Fatigue performance of cracked tubular T joints under combined loads. I: experimental.” Journal of Structural Engineering, vol. 130, no. 4, pp. 562–571, DOI: 10.1061/(ASCE)0733-9445(2004)130:4(572).CrossRefGoogle Scholar
  6. Electrical Power Research Institute (EPRI) (2007). Carbon steel handbook, Palo Alto, California, USA.Google Scholar
  7. Fragoudakis, R., Karditsas, S., Savaidis, G., and Michailidis, N. (2014). “The effect of heat and surface treatment on the fatigue behaviour of 56SiCr7 Spring Steel.” Procedia Engineering, vol. 74, pp. 309–312, DOI: 10.1016/j.proeng.2014.06.268.CrossRefGoogle Scholar
  8. Gao, F., Guan, X. Q., Zhu, H. P., and Xia, Y. (2015). “Hysteretic behaviour of tubular T-joints reinforced with doubler plates after fire exposure.” Thin-Walled Structures, vol. 92, pp. 10–20, DOI: 10.1016/j.tws. 2015. 02.010.CrossRefGoogle Scholar
  9. Han, L. H., Huo, J. S., and Wang, Y. C. (2005). “Compressive and flexural behaviour of concrete filled steel tubes after exposure to standard fire.” Journal of Constructional Steel Research, vol. 61, no. 7, pp. 882–901, DOI: 10.1016/j.jcsr.2004.12.005.CrossRefGoogle Scholar
  10. Han, L. H. and Lin, X. K. (2004). “Tests on cyclic behavior of concretefilled hollow structural steel columns after exposure to the ISO-834 standard fire.” Journal of Structural Engineering, vol. 130, no. 11, pp. 1807–1819, DOI: 10.1061/(ASCE)0733-9445(2004)130:11(1807).CrossRefGoogle Scholar
  11. Hellier, A. K., Connolly, M. P., and Dover, W. D. (1990). “Stress concentration factors for tubular Y-and T-joints.” International Journal of Fatigue, vol. 12, no. 1, pp. 13–23, DOI: 10.1016/0142-1123(90) 90338-F.CrossRefGoogle Scholar
  12. Jin, M., Zhao, J. C., Chang, J., and Zhang, D. X. (2012). “Experimental and parametric study on the post-fire behavior of tubular T-joint.” Journal of Constructional Steel Research, vol. 70, pp. 93–100, DOI: 10.1016/j.jcsr.2011.07.018.CrossRefGoogle Scholar
  13. Klueh, R. L. (1989). “Heat treatment behavior and tensile properties of Cr−W steels.” Metallurgical Transactions, vol. 20, no. 3, pp. 463–470, DOI: 10.1007/BF02653926.CrossRefGoogle Scholar
  14. Krauss, G. (1980). Principles of heat treatment of steel, American Society for Metals, Metals Park, Ohio.Google Scholar
  15. Lee, C., Chiew, S., Lie, S., and Sopha, T. (2011). “Comparison of fatigue performances of gapped and partially overlapped CHS K-joints.” Engineering Structures, vol. 33, no. 1, pp. 44–52, DOI: 10.1016/j.engstruct.2010.09.016.CrossRefGoogle Scholar
  16. Liu, G., Liu, Y., and Huang, Y. (2014). “A novel structural stress approach for multiaxial fatigue strength assessment of welded joints.” International Journal of Fatigue, vol. 63, pp. 171–182, DOI: 10.1016/j.ijfatigue.2014.01.022.CrossRefGoogle Scholar
  17. Liu, G., Zhao, X., and Huang, Y. (2015). “Prediction of stress distribution along the intersection of tubular T-joints by a novel structural stress approach.” International Journal of Fatigue, vol. 80, pp. 216–230, DOI: 10.1016/j.ijfatigue.2015.05.021.CrossRefGoogle Scholar
  18. Mashiri, F. R., Zhao, X. L., and Grundy, P. (2004). “Stress concentration factors and fatigue behaviour of welded thin-walled CHS–SHS Tjoints under in-plane bending.” Engineering Structures, vol. 26, no. 13, pp. 1861–1875, DOI: 10.1016/j.engstruct.2004.06.010.CrossRefGoogle Scholar
  19. McClung, R. (2007). “A literature survey on the stability and significance of residual stresses during fatigue.” Fatigue & Fracture of Engineering Materials & Structures, vol. 30, no. 3, pp. 173–205, DOI: 10.1111/j.1460-2695.2007.01102.x.CrossRefGoogle Scholar
  20. Moisan, É., Sabourin, M., Bernard, M., and Bui-Quoc, T. (2006). “Residual stress measurements in hydraulic turbine welded joints.” IAHR 23rd symposium on hydraulic machinery and systems, Yokohama, Japan.Google Scholar
  21. Potvin, A. B., Kuang, J. G., Leick, R. D., and Kahlich, J. L. (1977). “Stress concentration in tubular joints.” Society of Petroleum Engineers Journal, vol. 17, no. 4, pp. 287–299, DOI: 10.4043/2205-MS.CrossRefGoogle Scholar
  22. Qian, X., Jitpairod, K., Marshall, P., Swaddiwudhipong, S., Ou, Z., Zhang, Y., and Pradana, M. R. (2014). “Fatigue and residual strength of concrete-filled tubular X-joints with full capacity welds.” Journal of Constructional Steel Research, vol. 100, pp. 21–35, DOI: 10.1016/j.jcsr.2014.04.021.CrossRefGoogle Scholar
  23. Qian, X., Nguyen, C. T., Petchdemaneengam, Y., Ou, Z., Swaddiwudhipong, S., and Marshall, P. (2013a). “Fatigue performance of tubular Xjoints with PJP+ welds: II—Numerical investigation.” Journal of Constructional Steel Research, vol. 89, pp. 252–261, DOI: 10.1016/j.jcsr.2013.07.003.CrossRefGoogle Scholar
  24. Qian, X., Petchdemaneengam, Y., Swaddiwudhipong, S., Marshall, P., Ou, Z., and Nguyen, C. T. (2013b). “Fatigue performance of tubular X-joints with PJP+ welds: I—Experimental study.” Journal of Constructional Steel Research, vol. 90, pp. 49–59, DOI: 10.1016/j.jcsr.2013.07.016.CrossRefGoogle Scholar
  25. Schumacher, A. and Nussbaumer, A. (2006). “Experimental study on the fatigue behaviour of welded tubular K-joints for bridges.” Engineering structures, vol. 28, no. 5, pp. 745–755, DOI: 10.1016/j.engstruct.2005.10.003.CrossRefGoogle Scholar
  26. Shao, Y. B., Du, Z. F., and Lie, S. T. (2009). “Prediction of hot spot stress distribution for tubular K-joints under basic loadings.” Journal of Constructional Steel Research, vol. 65, no. 10, pp. 2011–2026, DOI: 10.1016/j.jcsr.2009.05.004.CrossRefGoogle Scholar
  27. Shao, Y. B., Zheng, Y. J., Zhao, H. C., and Yang, D. P. (2016). “Performance of tubular T-joints at elevated temperature by considering effect of chord compressive stress.” Thin-Walled Structures, vol. 98, pp. 533–546, DOI: 10.1016/j.tws.2015.10.022.CrossRefGoogle Scholar
  28. Shao, Y. B., He, S. B., Zhang, H. Y., and Wang, Q. L. (2017). “Hysteretic behavior of tubular T-joints after exposure to elevated temperature.” Ocean Engineering, vol. 129, pp. 57–67, DOI: 10.1016/j.oceaneng. 2016.11.017.CrossRefGoogle Scholar
  29. Thelning, K. E. (2013). Steel and its heat treatment, Butterworth-Heinemann, Jordan Hill, Oxford.Google Scholar
  30. Trudel, A., Sabourin, M., Lévesque, M., and Brochu, M. (2014). “Fatigue crack growth in the heat affected zone of a hydraulic turbine runner weld.” International Journal of Fatigue, vol. 66, pp. 39–46, DOI: 10.1016/j.ijfatigue.2014.03.006.CrossRefGoogle Scholar
  31. Wardenier, J., Packer, J., Zhao, X. L., and van der Vegte, G. J. (2010). Hollow sections in structural applications. Comité International pour le Développement et l’Étude de la Construction Tubulaire (CIDECT), Geneva, Switzerland.Google Scholar
  32. Yang, H., Han, L. H., and Wang, Y. C. (2008). “Effects of heating and loading histories on post-fire cooling behaviour of concrete-filled steel tubular columns.” Journal of Constructional Steel Research, vol. 64, no. 5, pp. 556–570, DOI: 10.1016/j.jcsr.2007.09.007.CrossRefGoogle Scholar
  33. Zhao, X. L., Herion, S., Packer, J. A., Puthli, R., Sedlacek, G., Wardenier, J., Weynand, K., van Wingerde, A., and Yeomans, N. (2000). Design guide for circular and rectangular hollow section joints under fatigue loading, Comité International pour le Développement et l’Étude de la Construction Tubulaire (CIDECT) Publication No. 8, TUV-Verlag, Germany.Google Scholar

Copyright information

© Korean Society of Civil Engineers 2018

Authors and Affiliations

  • Hazem Samih Mohamed
    • 1
    • 2
  • Fei Gao
    • 1
    • 2
  • Xing-Quan Guan
    • 1
    • 2
  • Hong Ping Zhu
    • 1
    • 2
  1. 1.School of Civil Engineering and MechanicsHuazhong University of Science and TechnologyWuhanPR China
  2. 2.Hubei Key Laboratory of Control StructureHuazhong University of Science and TechnologyWuhanPR China

Personalised recommendations