Skip to main content
Log in

Experimental and Numerical Investigation on Vanes’ Effects on the Flow Characteristics in Sharp 60° Bends

  • Hydraulic Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The aim of this paper is to study the effect of middle vanes on the flow structure in open-channels with sharp 60° bends. For this purpose, two cases are considered, i.e. bends with (one-vane case), and without (no-vane case) middle vanes. To minimize the systematic errors, the models are also numerically simulated using the Standard and RNG based k-ε turbulence models. The validation process shows satisfactory agreement between the measured and predicted results with average RMSEs of 0.18 and 4.82, for the water depth and velocity values, respectively. The comparison of the obtained results for the no-vane and one-vane cases is presented. It is found that middle vanes are efficient to minimize the intensity of secondary currents, super-elevation, and the tendency to flow separation in the convex bank of the bend. According, non-submerged vanes can help to reduce erosion and sedimentation the bend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abhari, M. N., Ghodsian, M., Vaghefi, M., and Panahpur, N. (2010). “Experimental and numerical simulation of flow in a 90°bend.” Flow Measurement and Instrumentation, Vol. 21, No. 3, pp. 292–298, DOI: 10.1016/j.flowmeasinst.2010.03.002.

    Article  Google Scholar 

  • Armfield-Limited-Co (1995). Instruction manual of miniature propeller velocity meter type H33.

  • Aydin, M. C. and Emiroglu, M. E. (2016). “Numerical analysis of subcritical flow over two-cycle trapezoidal labyrinth side weir.” Flow Measurement and Instrumentation, Vol. 48, pp. 20–28, DOI: 10.1016/j.flowmeasinst.2016.01.007.

    Article  Google Scholar 

  • Blanckaert, K. and De Vriend, H. (2004). “Secondary flow in sharp open-channel bends.” Journal of Fluid Mechanics, Vol. 498, pp. 353–380, DOI: 10.1017/S0022112003006979.

    Article  MathSciNet  Google Scholar 

  • Blanckaert, K. and De Vriend, H. (2005). “Turbulence characteristics in sharp open-channel bends.” Physics of Fluids (1994-present), Vol. 17, No. 5, pp. 055102, DOI: 10.1063/1.1886726.

    Article  Google Scholar 

  • Blanckaert, K. and De Vriend, H. (2010). “Meander dynamics: A nonlinear model without curvature restrictions for flow in openchannel bends.” Journal of Geophysical Research: Earth Surface (2003–2012), Vol. 115, No. F4, pp. 1–22, DOI: 10.1029/2009JF001301.

    Article  Google Scholar 

  • Blanckaert, K. and Graf, W. H. (2001). “Mean flow and turbulence in open-channel bend.” Journal of Hydraulic Engineering, Vol. 127, No. 10, pp. 835–847, DOI: 10.1061/(ASCE)0733-9429(2001)127:10 (835).

    Article  Google Scholar 

  • Blanckaert, K. and Graf, W. H. (2004). “Momentum transport in sharp open-channel bends.” Journal of Hydraulic Engineering, Vol. 130, No. 3, DOI: 10.1061/(ASCE)0733-9429(2004).

    Google Scholar 

  • Blanckaert, K., Kleinhans, M. G., McLelland, S. J., Uijttewaal, W. S. J., Murphy, B. J., van de Kruijs, A., Parsons, D. R., and Chen, Q. (2013). “Flow separation at the inner (convex) and outer (concave) banks of constant-width and widening open-channel bends.” Earth Surface Processes and Landforms, Vol. 38, No. 7, pp. 696–716, DOI: 10.1002/esp.3324.

    Article  Google Scholar 

  • Chung, Y. M., Tucker, P. G., and Roychowdhury, D. (2003). “Unsteady laminar flow and convective heat transfer in a sharp 180 bend.” International journal of heat and fluid flow, Vol. 24, No. 1, pp. 67–76, DOI: 10.1016/S0142-727X(02)00202-3.

    Article  Google Scholar 

  • De Marchis, M. and Napoli, E. (2006). “3D numerical simulation of curved open channel flows.” Wseas Transactions on Fluid Mechanics, Vol. 1, No. 2, pp. 175.

    Google Scholar 

  • Dugue, V., Blanckaert, K., Qiuwen, C., and Schleiss, A. J. (2013). “Reduction of bend scour with an air-bubble screen–morphology and flow patterns.” International Journal of Sediment Research, Vol. 28, No. 1, pp. 15–23, DOI: 10.1016/S1001-6279(13)60014-1.

    Article  Google Scholar 

  • Farhadi, A., Tritthart, M., Glas, M., and Habersack, H. (2014). Experiments on two consecutive open channel bends, 7th International Conference on Fluvial Hydraulics, RIVER FLOW 2014, Lausanne, CRC Press/Balkema.

    Book  Google Scholar 

  • Fluent, F. (2006). 6.3 user’s guide.

    Google Scholar 

  • Gaudio, P., Malizia, A., and Lupelli, I. (2011). “RNG k-e modelling and mobilization experiments of loss of vacuum in small tanks for nuclear fusion safety applications.” International Journal of Systems Applications, Engineering & Development, Vol. 5, No. 3, pp. 287–305.

    Google Scholar 

  • Han, S., Ramamurthy, A., and Biron, P. M. (2011). “Characteristics of flow around open channel 90 bends with vanes.” Journal of Irrigation and Drainage Engineering, Vol. 137, No. 10, pp. 668–676.

    Article  Google Scholar 

  • Hirt, C. W. and Nichols, B. D. (1981). “Volume of Fluid (VOF) method for the dynamics of free boundaries.” Journal of Computational Physics, Vol. 39, No. 1, pp. 201–225, DOI: 10.1016/0021-9991 (81)90145-5.

    Article  Google Scholar 

  • Huai, W. X., Li, C. G., Zeng, Y. H., Qian, Z. D., and Yang, Z. H. (2012). “Curved open channel flow on vegetation roughened inner bank.” Journal of Hydrodynamics, Vol. 24, No. 1, pp. 124–129, DOI: 10.1016/s1001-6058(11)60226-6.

    Article  Google Scholar 

  • Huang, S.-l., Jia, Y.-f., Chan, H.-C., and Wang, S. S. Y. (2009). “Threedimensional numerical modeling of secondary flows in a wide curved channel.” Journal of Hydrodynamics, Ser. B, Vol. 21, No. 6, pp. 758–766, DOI: 10.1016/S1001-6058(08)60210-3.

    Article  Google Scholar 

  • Issa, R., Ahmadi-Befrui, B., Beshay, K., and Gosman, A. (1991). “Solution of the implicitly discretised reacting flow equations by operatorsplitting.” Journal of Computational Physics, Vol. 93, No. 2, pp. 388–410, DOI: 10.1016/0021-9991(91)90191-M.

    Article  Google Scholar 

  • Jackson, J. (1995). Osborne Reynolds: Scientist, engineer and pioneer, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society.

    MATH  Google Scholar 

  • Jana, C., Ghia, U., and Turkevich, L. (2014). “RANS-VOF Modeling of stratified turbulent flow in a straight rectangular duct.” Bulletin of the American Physical Society, Vol. 59, No. 20, pp. 232–233.

    Google Scholar 

  • Koken, M., Constantinescu, G., and Blanckaert, K. (2013). “Hydrodynamic processes, sediment erosion mechanisms, and Reynolds-numberinduced scale effects in an open channel bend of strong curvature with flat bathymetry.” Journal of Geophysical Research: Earth Surface, Vol. 118, No. 4, pp. 2308–2324, DOI: 10.1002/2013jf002760.

    Google Scholar 

  • Leschziner, M. A. and Rodi, W. (1979). “Calculation of strongly curved open channel flow.” Journal of the Hydraulics Division, Vol. 105, No. 10, pp. 1297–1314.

    Google Scholar 

  • López, I., Pereiras, B., Castro, F., and Iglesias, G. (2014). “Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS–VOF numerical model.” Applied Energy, Vol. 127, No. 1, pp. 105–114, DOI: 10.1016/j.apenergy.2014.04.020.

    Article  Google Scholar 

  • Mosonyi, E. and Götz, W. (1973). Secondary currents in subsequent model bends, International Symposium on River Mechanics, Asian Institute of Technology, Bangkok, Thailand.

    Google Scholar 

  • Ottevanger, W., Blanckaert, K., and Uijttewaal, W. (2012). “Processes governing the flow redistribution in sharp river bends.” Geomorphology, Vol. 163, No. 1, pp. 45–55, DOI: 10.1016/j.geomorph.2011.04.049.

    Article  Google Scholar 

  • Ramamurthy, A. S., Han, S. S., and Biron, P. M. (2013). “Three-dimensional simulation parameters for 90 open channel bend flows.” Journal of Computing in Civil Engineering, Vol. 27, No. 3, pp. 282–291, DOI: 10.1061/(asce)cp.1943-5487.0000209.

    Article  Google Scholar 

  • Ramamurthy, A., Qu, J., and Vo, D. (2005). “Volume of fluid model for an open channel flow problem.” Canadian Journal of Civil Engineering, Vol. 32, No. 5, pp. 996–1001, DOI: 10.1139/l05-038.

    Article  Google Scholar 

  • Richards, P. and Hoxey, R. (1993). “Appropriate boundary conditions for computational wind engineering models using the k-e turbulence model.” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 46, pp. 145–153, DOI: 10.1016/0167-6105(93)90124-7.

    Article  Google Scholar 

  • Seyedashraf, O. and Akhtari, A. A. (2016). “Flow separation control in open-channel bends.” Journal of the Chinese Institute of Engineers, Vol. 39, No. 1, pp. 40–48, DOI: 10.1080/02533839.2015.1066942.

    Article  Google Scholar 

  • Termini, D. (2009). “Experimental observations of flow and bed processes in large-amplitude meandering flume.” Journal of Hydraulic Engineering, Vol. 135, No. 7, pp. 575–587, DOI: 10.1061/(ASCE) HY.1943-7900.0000046.

    Article  Google Scholar 

  • USBR, U. (1987). Design of Small Dams, U. S. Government Printing Office, New York University Press.

  • Vaghefi, M., Akbari, M., and Fiouz, A. (2015). “An experimental study of mean and turbulent flow in a 180 degree sharp open channel bend: Secondary flow and bed shear stress.” KSCE Journal of Civil Engineering, Vol. 20, No. 4, pp. 1–12, DOI: 10.1007/s12205-015-1560-0.

    Google Scholar 

  • Yakhot, V., Orszag, S., Thangam, S., Gatski, T., and Speziale, C. (1992). “Development of turbulence models for shear flows by a double expansion technique.” Physics of Fluids A: Fluid Dynamics (1989-1993), Vol. 4, No. 7, pp. 1510–1520, DOI: 10.1063/1.858424.

    Article  MathSciNet  Google Scholar 

  • Yarahmadi, M. B. and Bejestan, M. S. (2016). “Sediment management and flow patterns at river bend due to triangular vanes attached to the bank.” Journal of Hydro-environment Research, Vol. 10, No. 1, pp. 64–75, DOI: 10.1016/j.jher.2015.10.002.

    Article  Google Scholar 

  • Ye, J. and McCorquodale, J. (1998). “Simulation of curved open channel flows by 3D hydrodynamic model.” Journal of Hydraulic Engineering, Vol. 124, No. 7, pp. 687–698, DOI: 10.1061/(ASCE)0733-9429(1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Seyedashraf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtari, A.A., Seyedashraf, O. Experimental and Numerical Investigation on Vanes’ Effects on the Flow Characteristics in Sharp 60° Bends. KSCE J Civ Eng 22, 1484–1495 (2018). https://doi.org/10.1007/s12205-017-1743-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-1743-y

Keywords

Navigation