Skip to main content
Log in

Two statistical scrutinize of impact strength and strength reliability of steel Fibre-Reinforced Concrete

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The variations in impact strength of steel Fibre Reinforced Concrete (FRC) were statistically, commanded in this research. For this purpose, the experimental impact test results of earlier researchers were investigated using two statistical approaches. Firstly, normality test was carried out on first crack strength (N1) and failure strength (N2) using distribution plot and its accuracy was verified with Kolmogorov-Smirnov, Shapiro-Wilk and Chen-Shapiro test. Secondly, strength reliability analysis was carried out using two parameter Weibull distribution and their Weibull parameters were determined using three methods viz., Empherical Method of Justus (EMJ), Method of Moments (MOM) and Empherical Method of Lysen (EML). Results suggested that, if three samples are used to determine the N1 value for researchers’ data, at 95% levels of confidence, then the error in the measured value is about 50%. The 0.1 reliability level of the impact strength values of EMJ, EML and MOM were 153, 120 and 153 respectively in case of N1 and were 198, 156, and 198 respectively in case of N2 based on earlier researcher’s data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ACI Committee 544.2R-89 (1989). Measurement of properties of fibre reinforced concrete, Detroit: American Concrete Institute.

    Google Scholar 

  • Adaramola, M. S., Martin, A. C. B., and Paul, S. S. (2014). “Assessment of wind power generation along the coast of Ghana.” Energy Conversion Management, Vol. 77, pp. 61–69, DOI: 10.1016/j.enconman. 2013.09.005.

    Article  Google Scholar 

  • Adhikary, B. and Mutsuyoshi, H. (2006). “Prediction of shear strength of steel fiber RC beams using neural networks.” Construction and Building Materials, Vol. 20, No. 9, pp. 801–11, DOI: 10.1016/j.conbuildmat.2005.01.047.

    Article  Google Scholar 

  • Akdag, A. and Guler, O. (2015). “A novel energy pattern factor method for wind speed distribution parameter estimation.” Energy Conversion and Management, Vol. 106, pp. 1124–1133, DOI: 10.1016/j.enconman. 2015.10.042.

    Article  Google Scholar 

  • Alavi Nia, A., Hedayatian, M., Nili, M., and Afrough Sabet, V. (2012). “An experimental and numerical study on how steel and polypropylene fibers affect the impact resistance in fiber-reinforced concrete.” International Journal of Impact Engineering, Vol. 46, pp. 62–73, DOI: 10.1016/j.ijimpeng.2012.01.009.

    Article  Google Scholar 

  • Arora, S. and Singh, S. P. (2016). “Analysis of flexural fatigue failure of concrete made with 100% Coarse Recycled Concrete Aggregates.” Construction and Building Materials, Vol. 102, pp. 782–791, DOI: 10.1016/j.conbuildmat.2015.10.098.

    Article  Google Scholar 

  • Atef, B., Ashour, A. F., and Platten, A. K. (2006). “Statistical variations in impact resistance of polypropylene fibre-reinforced concrete.” International Journal of Impact Engineering, Vol. 32, pp. 1907–1920, DOI: 10.1016/j.ijimpeng.2005.05.003.

    Article  Google Scholar 

  • Azeko Salifu, T., Kabiru, M., Ebenezer, A., Odusanya Olushola, S., Soboyejo Alfred, B. O., and Soboyejo Winston, O. (2015). “Statistical distributions of the strength and fracture toughness of recycled polyethylene-reinforced laterite composites.” J. Materials Civil. Engineering, Vol. 28, pp. 1–11, DOI: 10.1061/(ASCE)MT.1943-5533.0001426.

    Google Scholar 

  • Banthia, N., Mindess, S., and Trottier, J. F. (1996). “Impact resistance of steel fiber reinforced concrete.” ACI Material Journal, Vol. 93, pp. 472–479.

    Google Scholar 

  • Barros, J. A. O., Taheri, M., Salehian, H., and Mendes, P. J. D. (2012). “A design model for fibre reinforced concrete beams pre-stressed with steel and FRP bars.” Composite Structures, Vol. 94, No. 8, 2494–24512, DOI: 10.1016/j.compstruct.2012.03.007.

    Article  Google Scholar 

  • Chalioris, C. E. (2013). “Analytical approach for the evaluation of minimum fibre factor required for steel fibrous concrete beams under combined shear and flexure.” Construction and Building Materials, Vol. 43, pp. 317–336, DOI: 10.1016/j.conbuildmat.2013.02.039.

    Article  Google Scholar 

  • Chen, L. and Shapiro, S. S. (1995). “An alternative test for normality based on normalized spacings.” Journal of Statistical Computation and Simulation, Vol. 53, pp. 269–288.

    Article  MATH  Google Scholar 

  • Chen, X., Ding, Y., and Azevedo, C. (2011). “Combined effect of steel fibers and steel rebars on impact resistance of high performance concrete.” Journal of Central South University Technology, Vol. 18, pp. 1677–1684, DOI: 10.1007/s11771-011-0888-y.

    Article  Google Scholar 

  • Cucchiara, C., Mendola, L., and Papia, M. (2004). “Effectiveness of stirrups and steel fibres as shear reinforcement.” Cement and Concrete Composites, Vol. 26, No. 7, pp. 777–786, DOI: 10.1016/j.cemconcomp. 2003.07.001.

    Article  Google Scholar 

  • Dias, A. M. P. G., Martins, A. R. D., Simoes, L. M. C., Providencia, P. M., and Andrade, A. A. M. (2015). “Statistical analysis of timber–concrete connections–Mechanical properties.” Computers and Structures, Vol. 155, pp. 67–84, DOI: 10.1016/j.compstruc.2015. 02.036.

    Article  Google Scholar 

  • Faiz, U. A. S. (2013). “Review of mechanical properties of short fibre reinforced geopolymer composites.” Construction and Building Materials, Vol. 43, pp. 37–49, DOI: 10.1016/j.conbuildmat.2013. 01.026.

    Article  Google Scholar 

  • Fantilli, A. P., Chiaia, B., and Gorino, A. (2016). “Fiber volume fraction and ductility index of concrete beams.” Cement and Concrete Composites, Vol. 65, pp. 139–149, DOI: 10.1016/j.cemconcomp. 2015.10.019.

    Article  Google Scholar 

  • Fredy, C. and Artur, J. L. (2015). “A new generalized Weibull distribution generated by gamma random variables.” Journal of the Egyptian Mathematical Society, Vol. 23, pp. 382–390, DOI: 10.1016/j.joems.2014.03.009.

    Article  MathSciNet  MATH  Google Scholar 

  • Galambos, T. V., Ellingwood, B., MacGregor, J. G., and Cornell, C. A. (1982). “Probability based load criteria: assessment of current design practice.” J. Struct. Div. Am. Soc. Civ. Eng., Vol. 108, pp. 959–977.

    Google Scholar 

  • Goel, S., Singh, S. P., and Singh, P. (2012). “Flexural fatigue strength and failure probability of Self Compacting Fibre Reinforced Concrete beams.” Engineering Structures, Vol. 40, pp. 131–140, DOI: 10.1016/j.engstruct.2012.02.035.

    Article  Google Scholar 

  • Juarez C, Valdez, P., Duran, A., and Sobolev, K. (2007). “The diagonal tension behavior of fiber reinforced concrete beams.” J. Cem. Concr. Compos., Vol. 29, No. 5, pp. 402–408, DOI: 10.1016/j.cemconcomp.2006.12.009.

    Article  Google Scholar 

  • Justus, C. G., Hargraves, R., Mikhail, A., and Graber, D. (1977). “Methods for estimating wind speed frequency distributions.” Journal of Applied Meteorology, Vol. 17, pp. 350–353, DOI: 10.1175/1520-0450(1978) 017<0350:MFEWSF>2.0.CO;2.

    Article  Google Scholar 

  • Kim, H., Kim, G., Nam, J., Kim, J., Han, S., and Lee, S. (2015). “Static mechanical properties and impact resistance of amorphous metallic fiber-reinforced concrete.” Composite Structures, Vol. 134, pp. 831–844, DOI: 10.1016/j.compstruct.2015.08.128.

    Article  Google Scholar 

  • Kumar, K. S. P. and Gaddada, S. (2015). “Statistical scrutiny of Weibull parameters for wind energy potential appraisal in the area of northern Ethiopia.” Renewables, Vol. 2, No. 14, pp. 1–15, DOI: 10.1186/s40807-015-0014-0.

    Google Scholar 

  • Lim, D. H. and Oh, B. H. (1999). “Experimental and theoretical investigation on the shear of steel fibre reinforced concrete beams.” Journal Engineering Structures, Vol. 21, No. 10, pp. 937–944, DOI: 10.1016/S0141-0296(98)00049-2.

    Article  Google Scholar 

  • Lin, Y., Wotherspoon, L., and Ingham, J. (2014). “Tensile properties of an engineered cementitious composite shotcrete mix.” J. Materials Civil Engineering, Vol. 27, pp. 04014205, DOI: 10.1061/(ASCE) MT.1943-5533.0001164.

    Article  Google Scholar 

  • Lysen, E. H. (1983). Introduction to wind energy, The Netherlands: SWD Publication SWD 82-1.

    Google Scholar 

  • MacGregor, J. G., Mirza, S. A., and Ellingwood, B. (1983). “Statistical analysis of resistance of reinforced and prestressed concrete members.” J. American Concrete Institute, Vol. 80, pp. 167–176.

    Google Scholar 

  • Marar, K., Eren, O., and Celik, T. (2001). “Relationship between impact energy and compression toughness energy of high-strength fiberreinforced concrete.” Materials Letters, Vol. 47, pp. 297–304.

    Article  Google Scholar 

  • Mastali. M. and Dalvand, A. (2016). “The impact resistance and mechanical properties of self-compacting concrete reinforced with recycled CFRP pieces.” Composites Part B, Vol. 92, pp. 360–376, DOI: 10.1016/j.compositesb.2016.01.046.

    Article  Google Scholar 

  • Mohammadi, Y., Singh, S. P., and Kaushik, S. K. (2008). “Properties of steel fibrous concrete containing mixed fibres in fresh and hardened state.” Construction and Building Materials, Vol. 22, pp. 956–965, DOI: 10.1016/j.conbuildmat.2006.12.004.

    Article  Google Scholar 

  • Murali, G., Santhi, A. S., and Mohan Ganesh, G. (2014). “Impact resistance and strength reliability of Fiber-reinforced concrete in bending under drop weight impact load.” International Journal of Technology, Vol. 5, No. 2, pp. 111–120, DOI: 10.14716/ijtech.v5i2.403.

    Article  Google Scholar 

  • Murali, G., Santhi, A. S., and Mohan Ganesh, G. (2016). “Loss of mechanical properties of fiber-reinforced concrete exposed to impact load.” Romanian Journal of Materials, Vol. 46, No. 4, pp. 491–496.

    Google Scholar 

  • Nataraja, M. C., Dhang, N., and Gupta, A. P. (1999). “Statistical variations in impact resistance of steel fiber-reinforced concrete subjected to drop weight test.” Cement and Concrete Research, Vol. 29, pp. 989–995, DOI: 10.1016/S0008-8846(99)00052-6.

    Article  Google Scholar 

  • Nili, M. and Afroughsabet, V. (2010). “Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete.” International Journal of Impact Engineering, Vol. 37, pp. 879–886, DOI: 10.1016/j.ijimpeng.2010.03.004.

    Article  Google Scholar 

  • Rahmani, T., Kiani, B., Shekarchi, M., and Safari, A. (2012). “Statistical and experimental analysis on the behavior of fiber reinforced concretes subjected to drop weight test.” Construction and Building Materials, Vol. 37, pp. 360–369, DOI: 10.1016/j.conbuildmat.2012.07.068.

    Article  Google Scholar 

  • Richardson, A., Coventry, K., Lamb, T., and Mackenzie, D. (2016). “The addition of synthetic fibres to concrete to improve impact/ballistic Toughness.” Construction and Building Materials, Vol. 121, pp. 612–621, DOI: 10.1016/j.conbuildmat.2016.06.024.

    Article  Google Scholar 

  • Rusch, H. (1975). “Derivation of characteristic values of tensile strength of concrete.” Beton Herstell Verwend, Vol. 25, pp. 55–58.

    Google Scholar 

  • Shahid, I., Ahsan, A., Klaus, H., and Thomas, A. B. (2015). “Mechanical properties of steel fiber reinforced high strength lightweight selfcompacting concrete (SHLSCC).” Construction and Building Materials, Vol. 98, pp. 325–333, DOI: 10.1016/j.conbuildmat.2015.08.112.

    Article  Google Scholar 

  • Song, P. S., Wu, J. C., Hwang, S., and Sheu, B. C. (2005-a). “Statistical analysis of impact strength and strength reliability of steel–polypropylene hybrid fiber-reinforced concrete.” Construction and Building Materials, Vol. 19, pp. 1–9, DOI: 10.1016/j.conbuildmat. 2004.05.002.

    Article  Google Scholar 

  • Song, P. S., Wu, J.C., Hwang, S., and Sheu, B. C. (2005-b). “Assessment of statistical variations in impact resistance of high-strength concrete and high-strength steel fiber-reinforced concrete.” Cement and Concrete Research, Vol. 35, pp. 393–399, DOI: 10.1016/j.conbuildmat. 2004.05.002.

    Article  Google Scholar 

  • Sun, Y., Yu, Z., Wang, Z., and Liu, X. (2015). “Novel protective covering to enhance concrete resistance against projectile impact.” Construction and Building Materials, Vol. 96, pp. 484–490, DOI: 10.1016/j.conbuildmat.2015.08.054.

    Article  Google Scholar 

  • Taheri, M., Barros, J. A. O., and Salehian, H. (2012). “Parametric study of the use of strain softening/hardening FRC for RC elements failing in bending.” Journal of Materials Civil. Eng., Vol. 24, No. 3, pp. 259–274, DOI: 10.1061/(ASCE)MT.1943-5533.0000373.

    Article  Google Scholar 

  • Yan, H., Sun, W., and Chen, H. (1999). “The effect of silica fume and steel fiber on the dynamic mechanical performance of high-strength concrete.” Cement Concrete Research, Vol. 29, No. 3, pp. 423–426.

    Article  Google Scholar 

  • Zhang, J., Chen, W., Wang, C., Chen, X., Cheng, G., Qiu, Y., and Wu, H. (2016). “An improved modeling for life prediction of high-power white LED based on Weibull right approximation method.” Microelectronics Reliability, Vol. 59, pp. 49–54, DOI: 10.1016/j.microrel.2015.12.040.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Murali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murali, G., Gayathri, R., Ramkumar, V.R. et al. Two statistical scrutinize of impact strength and strength reliability of steel Fibre-Reinforced Concrete. KSCE J Civ Eng 22, 257–269 (2018). https://doi.org/10.1007/s12205-017-1554-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-1554-1

Keywords

Navigation