Skip to main content
Log in

Application of Big Bang - Big Crunch Optimization to Resource Constrained Scheduling Problems

  • Construction Management
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Last decades have witnessed emergence of many different solution techniques proposed for resource constrained construction scheduling problems. High majority of these solutions involve metaheuristic techniques. Almost all of the techniques involving metaheuristic techniques are based on the search of the most convenient ordering of activities. In this study, a different approach is applied, namely, the search for the most convenient vector involving the early start days of the activities. This choice necessitated creation of two special operators called left-compression operator and right-compression operator. The use of these operators enabled determination of critical activities and critical paths for the problems with resource constraints. Analyses on example problems have indicated that for a given problem the optimum solution may not be unique, and on the other hand, there may be sub-optimal solutions where all activities are critical. The metaheuristic method used in the study is the Big Bang - Big Crunch Optimization, which could not have been applied to this problem if the vector of unknowns were considered as the ordered set of activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi, B., Shadrokh, S., and Arkat, J. (2006). “Bi-objective resourceconstrained project scheduling with robustness and makespan criteria.” Applied Mathematics and Computation, Vol. 180, No. 1, pp. 146–152, DOI: 10.1016/j.amc.2005.11.160.

    Article  MathSciNet  MATH  Google Scholar 

  • Afshar-Nadjafi, B., Basati, M., and Maghsoudlou, H. (2017). “Project scheduling for minimizing temporary availability cost of rental resources and tardiness penalty of activities.” Applied Soft Computing, Vol. 61, pp. 536–548, DOI: 10.1016/j.asoc.2017.08.033.

    Article  Google Scholar 

  • Agdas, D., Warne, D. J., Osio-Norgaard, J., and Masters, F. J. (2017). “Utility of genetic algorithms for solving large-scale construction time-cost trade-off problems.” Journal of Computing in Civil Engineering, Vol. 32, No. 1, pp. 04017072, DOI: 10.1061/(ASCE)CP.1943-5487.0000718.

    Article  Google Scholar 

  • Brucker, P., Drexl, A., Möhring, R., Neumann, K., and Pesch, E. (1999). “Resource-constrained project scheduling: Notation, Classification, models, and methods.” European Journal of Operational Research, Vol. 112, No. 1, pp. 3–41, DOI: 10.1016/S0377-2217(98)00204-5.

    Article  MATH  Google Scholar 

  • Buttelwerth, J. (2005). Computer integrated construction project scheduling, Prentice-Hall Inc., Englewood Cliffs, N.J., USA.

    Google Scholar 

  • Camp, C. V. (2007). “Design of space trusses using Big Bang -Big Crunch optimization.” ASCE Journal of Structural Engineering, Vol. 133, No. 7, pp. 999–1008. DOI: 10.1061/(ASCE)0733-9445 (2007).33:7(999).

    Article  Google Scholar 

  • Chaharsooghi, S. K. and Kermani, A. H. M. (2008). “An effective Ant Colony Optimization algorithm (ACO) for Multi-objective Resource Allocation Problem (MORAP).” Applied Mathematics and Computation, Vol. 200, No. 1, pp. 167–177, DOI: 10.1016/j.amc.2007.09.070.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, P.-H. and Shahandashti, S. M. (2009). “Hybrid of genetic algorithm and simulated annealing for multiple project scheduling with multiple resource constraints.” Automation in Construction, Vol. 18, No. 4, pp. 434–443, DOI: 10.1016/j.autcon.2008.10.007.

    Article  Google Scholar 

  • Chootinan, P. and Chen, A. (2006). “Constraint handling in genetic algorithms using a gradient-based repair method.” Computers & Operations Research, Vol. 33, No. 8, pp. 2263–2281, DOI: 10.1016/j.cor.2005.02.002.

    Article  MATH  Google Scholar 

  • Christodoulou, S. (2009). “Construction imitating ants: Resourceunconstrained scheduling with artificial ants.” Automation in Construction, Vol. 18, No. 3, pp. 285–293, DOI: 10.1016/j.autcon. 2008.09.005.

    Article  Google Scholar 

  • Coello Coello, C. A. (2001). “Theoretical and numerical constrainthandling techniques used with evolutionary algorithms: A survey of the state of the art.” Computer Methods in Applied Mechanics and Engineering, Vol. 191, Nos. 11–12, pp. 1245–1287, DOI: 10.1016/S0045-7825(01)00323-1.

    Article  MathSciNet  MATH  Google Scholar 

  • Das, P. P. and Acharyya, S. (2011). “Meta-heuristic approaches for solving resource constrained project scheduling problem: A comparative study.” In Computer Science and Automation Engineering (CSAE), 2011 IEEE International Conference on (Vol. 2, pp. 474–478). IEEE. 10.1109/CSAE.2011.5952511.

    Google Scholar 

  • Erol, O. K. and Eksin, I. (2006). “A new opimization method: Big Bang -Big Crunch.” Advanced Engineering Software, Vol. 37, No. 2, pp. 106–111, DOI: 10.1016/j.advengsoft.2005.04.005.

    Article  Google Scholar 

  • Faghihi, V., Nejat, A., Reinschmidt, K. F., and Kang, J. H. (2015). “Automation in construction scheduling: A review of the literature.” The International Journal of Advanced Manufacturing Technology, Vol. 81, Nos. 9–12, pp. 1845–1856, DOI: 10.1007/s00170-015-7339-0.

    Article  Google Scholar 

  • Faghihi, V., Reinschmidt, K. F., and Kang, J. H. (2014). “Construction scheduling using genetic algorithm based on building information model.” Expert Systems with Applications, Vol. 41, No. 16, pp. 7565–7578, DOI: 10.1016/j.eswa.2014.05.047.

    Article  Google Scholar 

  • Genc, H. M. and Hocaoglu, A. K. (2008). “Bearing-only target tracking based on Big Bang -Big Crunch algorithm.” The 3rd International Multi-Conference On Computing in the Global Information Technology, ICCGI, Athens, Greece, DOI: 10.1109/ICCGI.2008.53.

    Google Scholar 

  • Giran, O., Temur, R., and Bekdaş, G. (2017). “Resource constrained project scheduling by harmony search algorithm.” KSCE Journal of Civil Engineering, Vol. 21, No. 2, pp. 479–487, DOI: 10.1007/s12205-017-1363-6.

    Article  Google Scholar 

  • Haddad, O. B., Mirmomeni, M., Mehrizi, M. Z., and Marino, M. M. (2010). “Finding the shortest path with honey-bee mating optimization algorithm in project management with constrained / unconstrained resources.” Computational Optimization and Applications, Vol. 47, No. 1, pp. 97–128, DOI: 10.1007/s10589-008-9210-9.

    Article  MathSciNet  MATH  Google Scholar 

  • Hegazy, T. and Kassab, M. (2003). “Resource optimization using combined simulation and genetic algorithms.” ASCE Journal of Construction Engineering and Management, Vol. 129, No. 6, pp. 698–705, DOI: 10.1061/(ASCE)0733-9364(2003).29:6(698).

    Article  Google Scholar 

  • Kaveh, A. and Talatahari, S. (2009). “Size optimization of space trusses using Big Bang -Big Crunch algorithm.” Computers and Structures, Vol. 87, Nos. 17–18, pp. 1129–1140, DOI: 10.1016/j.compstruc.2009.04.011.

    Article  Google Scholar 

  • Kim, J.-L. (2005). “A framework for integration model of resourceconstrained scheduling using genetic algorithms.” In Proceedings of 2005 Winter Simulation Conference, INFORMS Simulation Society, USA, Edited byM. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, pp. 2119–2126, DOI: 10.1109/WSC.2005.1574496.

    Google Scholar 

  • Kim, J.-L. (2007). “Permutation-based elitist genetic algorithm for using serial scheme for large-sized resource-constrained project scheduling.” Proceedings of 2007 Winter Simulation Conference. Edited by S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, pp. 2112–2118.

    Google Scholar 

  • Kim, J.-L. (2009). “Improved genetic algorithm for resource-constrained scheduling of large projects.” Canadian Journal of Civil Engineering, Vol. 36, No. 6, pp. 1016–1027, DOI: 10.1139/L09-049.

    Article  Google Scholar 

  • Kim, J.-L. and Ellis, R. D. (2008). “Permutation-based elitist genetic algorithm for optimization of large-sized resource-constrained project scheduling.” ASCE Journal of Construction Engineering and Management, Vol. 134, No. 11, pp. 904–913, DOI: 10.1061/(ASCE)0733-9364(2008).34:11(904).

    Article  Google Scholar 

  • Kim, J.-L. and Ellis, R. D. (2009). “Robust global and local search approach to resource-constrained project scheduling.” Canadian Journal of Civil Engineering, Vol. 36, No. 3, pp. 375–388, DOI: 10.1139/L08-135.

    Article  Google Scholar 

  • Kim, K. W., Gen, M., and Yamazaki, G. (2003). “Hybrid genetic algorithm with fuzzy logic for resource-constrained project scheduling.” Applied Soft Computing, Vol. 2, No. 3, pp. 174–188, DOI: 10.1016/S1568-4946(02)00065-0.

    Article  Google Scholar 

  • Kumbasar, T., Eksin, I., Guzelkaya, M., and Yesil, E. (2011). “Adaptive fuzzy model based inverse controller design using BB-BC optimization algorithm.” Expert Systems with Applications, Vol. 38, No. 10, pp. 12356–12364, DOI: 10.1016/j.eswa.2011.04.015.

    Article  Google Scholar 

  • Lee, J. K. and Kim, Y. D. (1996). “Search heuristics for resource constrained project scheduling.” Journal of the Operational Research Society, Vol. 47, No. 5, pp. 678–689, DOI: 10.1057/jors.1996.79.

    Article  MATH  Google Scholar 

  • Leu, S.-S., Yang, C.-H., and Huang, J.-C. (2000). “Resource leveling in construction by genetic algorithm -based optimization and its decision support system application.” Automation in Construction, Vol. 10, No. 1, pp. 27–41, DOI: 10.1016/S0926-5805(99)00011-4.

    Article  Google Scholar 

  • Liao, T. W., Egbelu, P. J., Sarker, B. R., and Leu, S. S. (2011). “Metaheuristics for project and construction management–A stateof-the-art review.” Automation in Construction, Vol. 20, No. 5, pp. 491–505, DOI: 10.1016/j.autcon.2010.12.006.

    Article  Google Scholar 

  • Mendes, J. J. M., Goncalves, J. F., and Resende, M. G. C. (2009). “A random key based genetic algorithm for the resource constrained project scheduling problem.” Computers & Operations Research, Vol. 36, No. 1, pp. 92–109, DOI: 10.1016/j.cor.2007.07.001.

    Article  MathSciNet  MATH  Google Scholar 

  • Ponz-Tienda, J. L., Yepes, V., Pellicer, E., and Moreno-Flores, J. (2013). “The resource leveling problem with multiple resources using an adaptive genetic algorithm.” Automation in Construction, Vol. 29, pp. 161–172, DOI: 10.1016/j.autcon.2012.10.003.

    Article  Google Scholar 

  • Prayogo, D., Cheng, M. Y., Wu, Y. W., Herdany, A. A., and Prayogo, H. (2018). “Differential Big Bang-Big Crunch algorithm for constructionengineering design optimization.” Automation in Construction, Vol. 85, pp. 290–304, DOI: 10.1016/j.autcon.2017.10.019.

    Article  Google Scholar 

  • Saha, A. (2013). “Big-bang big-crunch optimization in locating the critical surface in slope-stability.” Proceedings of Indian Geotechnical Conference, Roorkee, India

    Google Scholar 

  • Senouci, A. B. and Eldin, N. N. (2004). “Use of genetic algorithms in resource scheduling of construction projects.” ASCE Journal of Construction Engineering and Management, Vol. 130, No. 6, pp. 869–877, DOI: 10.1061/(ASCE)0733-9364(2004).30:6(869).

    Article  Google Scholar 

  • Sonmez, R. and Bettemir, H. (2014). “A hybrid genetic algorithm for the discrete time–cost trade-off problem.” Expert Systems with Applications, Vol. 39, No. 13, pp. 11428–11434, DOI: 10.1016/j.eswa.2012.04.019.

    Article  Google Scholar 

  • Summanwar, V. S., Jayaraman, V. K., Kulkarni, B. D., Kusumakar, H. S., Gupta, K., and Rajesh, J. (2002). “Solution of constrained optimization problems by multi-objective genetic algorithm.” Computers and Chemical Engineering, Vol. 26, No. 10, pp. 1481–1492, DOI: 10.1016/S0098-1354(02)00125-4.

    Article  Google Scholar 

  • Tabakov, P. Y. (2011). “Big Bang–Big Crunch optimization method in optimum design of complex composite laminates.” World Academy of Science, Engineering and Technology, Vol. 5, No. 3, pp. 835–839.

    Google Scholar 

  • Thomas, P. R. and Salhi, S. (1998). “A tabu search approach for the resource constrained project scheduling problem.” Journal of Heuristics, Vol. 4, No. 2, pp. 123–139, DOI: 10.1023/A:100967351.

    Article  MATH  Google Scholar 

  • Toklu, Y. C. (2002). “Application of genetic algorithms to construction scheduling with or without resource constraints.” Canadian Journal of Civil Engineering, Vol. 29, No. 3, pp. 421–429, DOI: 10.1139/l02-034.

    Article  Google Scholar 

  • Tran, D. H., Cheng, M. Y., and Cao, M. T. (2015). “Solving resourceconstrained project scheduling problems using hybrid artificial bee colony with differential evolution.” Journal of Computing in Civil Engineering, Vol. 30, No. 4, p. 04015065, DOI: 10.1061/(ASCE) CP.1943-5487.0000544.

    Article  Google Scholar 

  • Wu, C., Wang, X., and Lin, J. (2014). “Optimizations in project scheduling: A state-of-art survey.” In Optimization and Control Methods in Industrial Engineering and Construction, Springer Netherlands, pp. 161–177, DOI: 10.1007/978-94-017-8044-5_10.

    Chapter  Google Scholar 

  • Yilmaz, S. and Gokasan, M. (2014). “Optimal trajectory planning by Big Bang-Big Crunch algorithm.” In Control, Decision and Information Technologies (CoDIT), International Conference on pp. 557–561, IEEE, DOI: 10.1109/CoDIT.2014.6996955.s

    Google Scholar 

  • Yin, P.-Y. and Wang, J.-Y. (2006). “Ant colony optimization for the nonlinear resource allocation problem.” Applied Mathematics and Computation, Vol. 174, No. 2, pp. 1438–1453, DOI: 10.1016/j.amc.2005.05.042.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, H., Li, H., and Tam, C. M. (2006). “Particle swarm optimization for resource-constrained project scheduling.” International Journal of Project Management, Vol. 24, No. 1, pp. 83–92, DOI: 10.1016/j.ijproman.2005.06.006.

    Article  Google Scholar 

  • Zhou, J., Love, P. E., Wang, X., Teo, K. L., and Irani, Z. (2013). “A review of methods and algorithms for optimizing construction scheduling.” Journal of the Operational Research Society, Vol. 64, No. 8, pp. 1091–1105, DOI: 10.1057/jors.2012.174.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Cengiz Toklu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toklu, Y.C. Application of Big Bang - Big Crunch Optimization to Resource Constrained Scheduling Problems. KSCE J Civ Eng 22, 4760–4770 (2018). https://doi.org/10.1007/s12205-017-1549-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-1549-y

Keywords

Navigation