Skip to main content
Log in

Shear Buckling Analysis of Steel Flat and Corrugated Web I-girders

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

One of the parameters of the economic design of steel I-girders is the use of thin webs. However, in large spans, the use of deep I-girders with thin web leads to the buckling of the web. In order to achieve out-of-plane stiffness and shear buckling resistance without the use of stiffeners or increasing the thickness of the webs, one possible way is to use corrugated plates in the I-girder web. To understand, shear stress distribution of the web a series of three-point load test was performed on four types of the web; (flat, trapezoidal-, sinusoidal-, and the zigzag-corrugated). A non-linear FE analysis method was used to obtain the shear stress distribution in a flat and corrugated web, since it was not possible to obtain the shear stress distribution from the experimental investigation. Based on this research, it was found that the main failure modes of the current models are yielding or shear buckling of the web when it is under the shear. In addition, it shows that the failure of all beams occurred due to shear buckling of the web without any interaction of the flange. In the other hand, the shear stress along the side of the flange is nearly zero; it is clear that the web takes almost all the shear force. The nonlinear analysis results show that shear stress is maximum and uniformly distributed on the web before the buckling. After buckling, the volume of shear stress is reduced and distributed unevenly. According to the results, there are three types of shear buckling: local, global, and interactive in models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ABAQUS Standard User’s Manual (2016). The Abaqus Software is a product of Dassault Systèmes Simulia Corp., Providence, RI, USA Dassault Systèmes, Version 2016, USA; 2016.

    Google Scholar 

  • ABAQUS (2016). Hibbitt, Karlson and Sorensen, Inc., Pawtucket, Rhode Island.

  • Alinia, M. M. and Moosavi, S. H. (2009). “Stability of longitudinally stiffened web plates under interactive shear and bending forces.” Thin-Walled Structures, Vol. 47, No. 1, pp. 53–60, DOI: 10.1016/j.tws.2008.05.005.

    Article  Google Scholar 

  • Bedynek, A., Real, E., and Mirambell, E. (2013). “Tapered plate girders under shear: Tests and numerical research.” Eng Struct., Vol. 46, pp. 350–358, DOI: 10.1016/j.engstruct.2012.07.023.

    Article  Google Scholar 

  • Carpinteri, A. and Monetto, I. (1999). “Snap-back analysis of fracture evolution in multicracked solids using boundary element method.” Int. J. Fract., Vol. 98, Nos. 3–4, pp. 225–241.

    Article  Google Scholar 

  • Chan, C. L., Khalid, Y. A., Sahari, B. B., and Hamouda, A. M. S. (2002). “Finite element analysis of corrugated web beams under bending.” Journal of Constructional Steel Research, Vol. 58, No. 11, pp. 1391–1406, DOI: 10.1016/S0143-974X(01)00075-X.

    Article  Google Scholar 

  • Driver, R. G., Abbas, H. H., and Sause, R. (2006). “Shear behavior of corrugated web bridge girders.” J. Struct. Eng. ASCE, Vol. 132, No. 2, pp. 195–203, DOI: 10.1061/(ASCE) 0733-9445(2006)132:2(195).

    Article  Google Scholar 

  • Easley, J. T. (1975). “Buckling formulae for corrugated metal shear diaphragms.” Journal of Structural Division, ASCE, Vol. 101, No. ST7, pp. 1403–1413.

    Google Scholar 

  • Easley, J. T. and McFarland, D. E. (1969). “Buckling of light-gauge corrugated metal shear diaphragms.” J. Struct Div, ASCE, Vol. 95, No. ST7, pp. 1497–1516.

    Google Scholar 

  • El-Metwally, A. S. and Loov, R. E. (1998). “Composite girders-high strength concrete combined with corrugated steel webs.” Proceeding of The International Symposium on High Performance and Reactive Powder Concrete, Sherbrook, Quebec, Canada, Vol. 1, pp. 197–215.

    Google Scholar 

  • Eldib, M. E. A.-H. (2009). “Shear buckling strength and design of curved corrugated steel webs for bridges.” Journal of Constructional Steel Research, Vol. 65, No. 12, pp. 2129–2139, DOI: 10.1016/j.jcsr.2009.07.002.

    Article  Google Scholar 

  • Elgaaly, M., Hamilton, R. W., and Seshadri, A. (1996). “Shear strength of beams with corrugated webs.” American Society of Civil Engineers, Journal Structural Engineering, Vol. 122, No. 4, pp. 390–398, DOI: 10.1061/(ASCE)0733-9445(1996)122:4(390).

    Google Scholar 

  • Elgaaly, M. and Seshadri, A. (1997). “Girders with corrugated webs under partial compressive edge loading.” Journal of Structural Engineering, Vol. 123, No. 6, pp. 783–791, DOI: 10.1061/(ASCE) 0733-9445(1997)123:6(783).

    Article  Google Scholar 

  • Elkawas, A. A., Hassanein, M. F., and El-Boghdadi, M. H. (2017). “Numerical investigation on the nonlinear shear behaviour of highstrength steel tapered corrugated web bridge girders.” Eng. Struct. Vol. 134, pp. 358–375, DOI:10.1016/j.engstruct.2016.12.044.

    Article  Google Scholar 

  • Ellobody, E. (2017). “Interaction of buckling modes in railway plate girder steel bridges.” Thin-Walled Structures, Vol. 115, pp. 58–75, DOI: 10.1016/j.tws.2016.12.007.

    Article  Google Scholar 

  • EN 1993-1-5. Eurocode 3 (2007). Design of steel structures–Part 1–5: plated structural elements, CEN.

    Google Scholar 

  • Gholizadeh, S., Pirmoz, A., and Attarnejad, R. (2011). “Assessment of load carrying capacity of castellated stee beams by neural networks.” Journal of Constructional Steel Research, Vol. 67, No. 5, pp. 770–779, DOI: 10.1016/j.jcsr.2011.01.001.

    Article  Google Scholar 

  • Gholizadeh, S. and Shahrezaei, A. M. (2015). “Optimal placement of steel plate shear walls for steel frames by bat algorithm.” Struct. Design Tall Spec. Build., Vol. 24, No. 1, pp. 1–18, DOI: 10.1002/tal.1151.

    Article  Google Scholar 

  • Hassanein, M. F. and Kharoob, O. F. (2013a). “Behavior of bridge girders with corrugated webs: (I) Real boundary condition at the juncture of the web and flanges.” Engineering Structures, Vol. 57, pp. 554–564, DOI: 10.1016/j.engstruct.2013.03.004.

    Article  Google Scholar 

  • Hassanein, M. F. and Kharoob, O. F. (2013b). “Behavior of bridge girders with corrugated webs: (II) Shear strength and design.” Engineering Structures, Vol. 57, pp. 544–553, DOI: 10.1016/j.engstruct.2013.04.015.

    Article  Google Scholar 

  • Hassanein, M. F. and Kharoob, O. F. (2014). “Shear buckling behavior of tapered bridge girders with steel corrugated webs.” Engineering Structures., Vol. 74, pp. 157–169, DOI: 10.1016/j.engstruct.2014.05.021.

    Article  Google Scholar 

  • Hassanein, M. F., Elkawas, A. A., El Hadidy, A. M., and Elchalakani, M. (2017). “Shear analysis and design of high-strength steel corrugated web girders for bridge design.” Eng. Struct, Vol. 146, pp. 18–33, DOI: 10.1016/j.engstruct.2017.05.035.

    Article  Google Scholar 

  • Hassanein, M. F. and Kharoob, O. F. (2010). “Shear strength and behavior of transversely stiffened tubular flange plate girders.” Eng. Struct., Vol. 32, No. 9, pp. 2617–2630, DOI: 10.1016/j.engstruct.2010.04.034.

    Article  Google Scholar 

  • Hassanein, M. F. and Kharoob, O. F. (2012). “An extended evaluation for the shear behavior of hollow tubular flange plate girders.” Thin Walled Struct., Vol. 56, pp. 88–102. DOI: 10.1016/j.tws.2012.03.020.

    Article  Google Scholar 

  • Huang, L., Hikosaka, H., and Komine, K. (2004). “Simulation of accordion effect in corrugated steel web with concrete flanges.” Comput. Struct., Vol. 82, Nos. 23–26, pp. 2061–2069, DOI: 10.1016/j.compstruc.2003.07.010.

    Article  Google Scholar 

  • Ibrahim, S. A. (2014). “Lateral torsional buckling strength of unsymmetrical plate girders with corrugated webs.” Engineering Structures, Vol. 81, pp. 123–134, DOI: 10.1016/j.engstruct.2014.09.040.

    Article  Google Scholar 

  • Johnson, R. P. and Cafolla, J. (1997). “Corrugated webs in plate girders for bridges.” Proc. Inst. Civ. Eng.–Struct. Build, Vol. 123, pp. 157–164.

    Article  Google Scholar 

  • Kovesdi, B., Jáger, B., and Dunai, L. (2016). “Bending and shear interaction behavior of girders with trapezoidally corrugated webs.” Journal of Constructional Steel Research, Vol. 121, pp. 383–397, DOI: 10.1016/j.jcsr.2016.03.002.

    Article  Google Scholar 

  • Leblouba, M., Junaid, M. T., Barakat, S., Altoubat, S., and Maalej, M. (2017). “Shear buckling and stress distribution in trapezoidal web corrugated steel beams.” Thin-Walled Structures, Vol. 113, pp. 13–26, DOI: 10.1016/j.tws.2017.01.002.

    Article  Google Scholar 

  • Li, Y., Zhang, W., Zhou, Q., Qi, X., and Widera, G. E. O. (2000). “Buckling strength analysis of the web of a WCW H-beam: Part 2: development and research on H-beams with Wholly Corrugated Webs (WCW).” J. Mater. Process. Technol., Vol. 101, Nos. 1–3, pp. 115–118, DOI: 10.1016/S0924-0136(00)00463-5.

    Article  Google Scholar 

  • Moon, J., Yi, J., Choi, B. H., and Lee, H. E. (2009). “Shear strength and design of trapezoidally corrugated steel webs.” Journal of Constructional Steel Research., Vol. 65, No. 5, pp. 1198–1205, DOI: 10.1016/j.jcsr.2008.07.018.

    Article  Google Scholar 

  • Nie, J.-G., Zhu, L., Tao, M.-X., and Tang, L. (2013). “Shear strength of Trapezoidal corrugated Steel webs.” J. Constr Steel Res., Vol. 85, pp. 105–115, DOI: 10.1016/j.jcsr.2013.02.012.

    Article  Google Scholar 

  • Persson, J. (2013). Lateral-torsional buckling of steel girders with trapezoidally corrugated webs, Master of Science Thesis, Chalmers University of Technology, Goteborg, Sweden.

    Google Scholar 

  • Ramm, E. and Stegmüller, H. (1982). “The displacement finite element method in nonlinear buckling analysis of shells.” In: Buckling of Shells, Springer, pp. 201–235, DOI: 10.1007/978-3-642-49334-8_7.

    Chapter  Google Scholar 

  • Riks, E. (1979). “An incremental approach to the solution of snapping and buckling problems.” Int. J. Solids Struct, Vol. 15, No. 7, pp. 529–551.

    Article  MathSciNet  MATH  Google Scholar 

  • Rózylo, P. and Wrzesinska, K. (2016). “Numerical analysis of the behaviour of compressed thin-walled elements with holes.” Advances in Science and Technology Research Journal, Vol. 10, No. 31, pp. 199–206, DOI: 10.12913/22998624/64006.

    Article  Google Scholar 

  • Wang, X, (2003). Behavior of steel members with trapezoidally corrugated webs and tubular flanges under static loading, PhD Thesis, Drexel University, Philadelphia, USA.

    Google Scholar 

  • Yi, J., Gil, H., Youm, K., and Lee, H. E. (2008). “Interactive shear buckling of trapezoidally corrugated webs.” Engineering Structures, Vol. 30, No. 6, pp. 1659–1666, DOI: 10.1016/j.engstruct.2007.11.009.

    Article  Google Scholar 

  • Zevallos, E., Hassanein, M. F., Real, E., and Mirambell, E. (2016). “Shear evaluation of tapered bridge girder panels with steel corrugated webs near the supports of continuous bridges.” Engineering Structures, Vol. 113, pp. 149–159, DOI: 10.1016/j.engstruct.2016.01.030.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaeddin Behravesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riahi, F., Behravesh, A., Fard, M.Y. et al. Shear Buckling Analysis of Steel Flat and Corrugated Web I-girders. KSCE J Civ Eng 22, 5058–5073 (2018). https://doi.org/10.1007/s12205-017-1530-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-1530-9

Keywords

Navigation