Skip to main content
Log in

High-resolution Climate Data From an Improved GIS-based Regression Technique for South Korea

  • Water Resources and Hydrologic Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

This study presents an improved GIS-based regression model that incorporates an adaptive effective radius algorithm into the structure of previous regression model (Kongju National University Regression Model, KNU/RM), named of IGISRM. The performances of IGISRM were evaluated at various spatial resolutions to select the most suitable grid-spacing considering accuracy and computational efficiency. In addition, the performances between IGISRM and KNU/RM were inter-compared based on various performance measures related to amount and occurrence of precipitation and extreme indices. The results showed that both regression models produced the compatible performance in amount-related measures. However, IGISRM outperformed KNU/RM in occurrence-related measures mainly by the adaptive effective radius. Especially, IGISRM improved the ability in reproducing spatial distribution of precipitation events when the spatial variability in precipitation occurrence highly exists. In contrast, KNU/RM predicted overly wet days due to drizzle effect. Such results indicate that IGISRM has the better skill to capture the heterogeneity of spatial distribution of precipitation. In addition, IGISRM showed higher skill in reproducing the extreme indices, in particular those related to wet and dry spell of precipitation, number of wet days and annual precipitation intensity mainly due to over-predicted wet days of KNU/RM induced by the longer radius of influence circle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abatzoglou, T. J. and Brown, J. T. (2012). “A comparison of statistical downscaling methods suited for wildfire applications.” Int. J. Climatol., Vol. 32, 772–780, DOI: 10.1002/joc.2312.

    Article  Google Scholar 

  • Barsugli, J. J. and Coauthors. (2013). “The Practitioner’s Dilemma: How to assess the credibility of downscaled climate projections.” EOS, Trans. Am. Geophys. Union, Vol. 94, No. 46, 424–425, DOI: 10.1002/2013EO460005.

    Article  Google Scholar 

  • Barry, R. G. and Chorley, R. J. (1987). Atmosphere, weather, and climate, 5th ed. Routledge, London, United Kingdom, p. 460.

    Google Scholar 

  • Bennett, K. E., Werner, A. T., and Schnorbus, M. (2012). “Uncertainties in hydrologic and climate change impact analyses in headwater basins of british Columbia.” Journal of Climate, Vol. 25, No. 17, 5711–5730, DOI: 10.1175/JCLI-D-11-00417.1.

    Article  Google Scholar 

  • Boer, E. P., de Beurs, K. M., and Hartkamp, A. D. (2001). “Kriging and thin plate splines for mapping climate variables.” International Journal of Applied Earth Observation and Geoinformation, Vol. 3, No. 2, 146–154, DOI: 10.1016/S0303-2434(01)85006-6.

    Article  Google Scholar 

  • Brekke, L. D., Kiang, J. E., Olsen, J. R., Pulwarty, R. S., Raff, D. A., Turnipseed, D. P., Webb, R. S., and White, K. D. (2009). Climate change and water resources management—A federal perspective, U.S. Geological Survey Circular, 1331, 65p, https://doi.org/pubs.usgs.gov/circ/1331/.

  • Bürger, G., Murdock, T. Q., Werner, A. T., Sobie, S. R., and Cannon, A. J. (2012). “Downscaling extremes—an intercomparison of multiple statistical methods for present climate.” Journal of Climate, Vol. 25, No. 12, 4366–4388, DOI: 10.1175/JCLI-D-11-00408.1.

    Article  Google Scholar 

  • Butt, N., De Oliveira, P. A., and Costa, M. H. (2011). “Evidence that deforestation affects the onset of the rainy season in Rondonia, Brazil.” J. Geophys. Res., Vol. 116, No. 11, DOI: 10.1029/2010JD015174.

    Google Scholar 

  • Chen, J., Brissette, F. P., Poulin, A., and Leconte, R. (2011). “Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed.” Water Resour. Res., Vol. 47, W12509, DOI: 10.1029/2011WR010602.

    Google Scholar 

  • Cherubini, T., Ghelli, A., and Lalaurette, F. (2002). “Verification of precipitation forecasts over the Alpine region using a high-density observing network.” Weather Forecast., Vol. 17, 238–249, DOI: 10.1175/1520-0434(2002).17<0238:VOPFOT>2.0.CO;2.

    Article  Google Scholar 

  • Choi, W., Kim, S. J., Rasmussen, P. F., and Moore, A. R. (2009). “Use of the North American regional reanalysis for hydrological modelling in Manitoba.” Can. Water Resour. J., Vol. 34, No. 1, 17–36, DOI: 10.4296/cwrj3401017.

    Article  Google Scholar 

  • Christensen, N. and Lettenmaier, D. P. (2007). “A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River basin.” Hydrol. Earth Syst. Sc., Vol. 11, 1417–1434, DOI: 10.5194/hess-11-1417-2007.

    Article  Google Scholar 

  • Crozier, L., Zabel, R. W., and Hamlet, A. H. (2007). “Predicting differential effects of climate change at the population level with life-cycle models of spring Chinook salmon.” Global Change Biol., Vol. 14, 236–249, DOI: 10.1111/j.1365-2486.2007.01497.x.

    Article  Google Scholar 

  • Daly, C. (2006). “Guidelines for assessing the suitability of spatial climate data sets.” Int. J. Climatol., Vol. 26, 707–721, DOI: 10.1002/joc.1322.

    Article  Google Scholar 

  • Daly, C., Gibson, W. P., Taylor, G. H., Johnson, G. L., and Pasteris, P. (2002). “A knowledge-based approach to the statistical mapping of climate.” Climate Research, Vol. 22, No. 2, 99–113, DOI: 10.3354/cr022099.

    Article  Google Scholar 

  • Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., Curtis, J., and Pasteris, P. P. (2008). “Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States.” International Journal of Climatology, Vol. 28, No. 15, 2031–2064, DOI: 10.1002/joc.1688.

    Article  Google Scholar 

  • Daly, C., Helmer, E. H., and Quiñones, M. (2003). “Mapping the climate of puerto rico, vieques and Culebra: Climate mapping.” International Journal of Climatology, Vol. 23, No. 11, 1359–1381, DOI: 10.1002/joc.937.

    Article  Google Scholar 

  • Daly, C., Neilson, R. P., and Phillips, D. L. (1994). “A statistical-topographic model for mapping climatological precipitation over mountainous terrain.” Journal of Applied Meteorology, Vol. 33, 140–158, DOI: 10.1175/1520-0450(1994).33<0140:ASTMFM>2.0.CO;2.

    Article  Google Scholar 

  • Dingman, S. L., Seely-Reynolds, D. M., and Reynolds, R. C. (1988). “Application of Kriging to estimating mean annual precipitation in a region of orographic influence.” Journal of the American Water Resources Association, Vol. 24, No. 2, 329–339, DOI: 10.1111/j.1752-1688.1988.tb02991.x.

    Article  Google Scholar 

  • Donaldson, R. J., Dyer, R. M., and Kraus, M. J. (1975). “An objective evaluator of techniques for predicting severe weather events.” Proc., 9th Conference on Severe Local Storms, Norman, Oklahoma.

    Google Scholar 

  • Eum, H.-I., Dibike, Y., Prowse, T., and Bonsal, B. (2014). “Inter-comparison of high-resolution gridded climate data sets and their implication on hydrological model simulation over the Athabasca Watershed, Canada.” Hydrol. Process., Vol. 28, 4250–4271, DOI: 10.1002/hyp.10236.

    Article  Google Scholar 

  • Eum, H.-I., Gachon, P., Laprise, R., and Ouarda, T. (2012). “Evaluation of regional climate model simulations versus gridded observed and regional reanalysis products using a combined weighting scheme.” Clim. Dynam., Vol. 38, 1433–1457, DOI: 10.1007/s00382-011-1149-3.

    Article  Google Scholar 

  • Eum, H.-I. and Simonovic, S. P. (2012). “Assessment on variability of extreme climate events for the Upper Thames River basin in Canada.” Hydrol. Process., Vol. 26, 485–499, DOI: 10.1002/hyp.8145.

    Article  Google Scholar 

  • Finley, J. P. (1884). “Tornado predictions.” American Meteorological Journal, Vol. 1, 85–88.

    Google Scholar 

  • Gilbert, G. K. (1884). “Finley’s tornado predictions.” Bull. Amer. Meteor. Soc., Vol. 1, 166–172.

    Google Scholar 

  • Gutmann, E., Pruitt, T., Clark, M. P., Brekke, L., Arnold, J. R., Raff, D. A., and Rasmussen, R. M. (2014). “An intercomparison of statistical downscaling methods used for water resources assessments in the United States.” Water Resour. Res., Vol. 50, 7167–7186, DOI: 10.1002/2014WR015559.

    Article  Google Scholar 

  • Hanson, C. L. (1982). “Distribution and stochastic generation of annual and monthly precipitation on a mountainous watershed in southwest Idaho.” J. Amer. Water Resour. As., Vol. 18, 875–883, DOI: 10.1111/j.1752-1688.1982.tb00085.x.

    Article  Google Scholar 

  • Hanson, R. T., Flint, L. E., Flint, A. L., Dettinger, M. D., Faunt, C. C., Cayan, D., and Schmid, W. (2012). “A method for physically based model analysis of conjunctive use in response to potential climate changes.” Water Resour. Res., Vol. 48, W00L08, DOI: 10.1029/ 2011WR010774.

    Article  Google Scholar 

  • Hay, L., LaFontaine, J., and Markstrom, S. (2014). “Evaluation of statistically downscaled GCM output as input for hydrological and stream temperature simulation in the Apalachicola-chattahoocheeflint river basin (1961–1999).” Earth Interact, Vol. 18, 1–32, DOI: 10.1175/2013EI000554.1.

    Article  Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A. (2005). “Very high resolution interpolated climate surfaces for global land areas.” International Journal of Climatology, Vol. 25, No. 15, 1965–1978, DOI: 10.1002/joc.1276.

    Article  Google Scholar 

  • Hong, K. O., Suh, M. S., Rha, D. K., Chang, D. H., Kim, C., and Kim, M. K. (2007). “Estimation of high resolution gridded temperature using GIS and PRISM.” Atmosphere, Vol. 17, 255–268 (in Korean).

    Google Scholar 

  • Hopkinson, R. F., McKenney, D. W., Milewska, E. J., Hutchinson, M. F., Papadopol, P., and Vincent, L. A. (2011). “Impact of aligning climatological day on gridding daily maximum–minimum Temperature and precipitation over Canada.” Journal of Applied Meteorology and Climatology, Vol. 50, No. 8, 1654–1665, DOI: 10.1175/2011JAMC2684.1.

    Article  Google Scholar 

  • Hutchinson, M. F. (2004). ANUSPLIN version 4.3., Centre for Resource and Environmental Studies, Australian National University Canberra, Australia, https://doi.org/fennerschool.anu.edu.au/publications/software/anusplin.php.

    Google Scholar 

  • Hutchinson, M. F., McKenney, D. W., Lawrence, K., Pedlar, J. H., Hopkinson, R. F., Milewska, E., and Papadopol, P. (2009). “Development and testing of Canada-Wide interpolated spatial models of daily minimum–maximum temperature and precipitation for 1961–2003.” Journal of Applied Meteorology and Climatology, Vol. 48, No. 4, 725–741, DOI: 10.1175/2008JAMC1979.1.

    Article  Google Scholar 

  • IPCC (2007). Climate change 2007: Impacts, adaptation and vulnerability working group II contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report, Intergovernmental Panel on Climate Change, Geneva, Switzerland, ISBN 978 0521 88010–7 hardback.

    Google Scholar 

  • Johansson, B. and Chen, D. (2005). “Estimation of areal precipitation for runoff modelling using wind data: A case study in Sweden.” Climate Research, Vol. 29, No. 1, 53–61, DOI: 10.3354/cr029053.

    Article  Google Scholar 

  • Karl, T. R., Nicholls, N., and Ghazi, A. (1999). “CLIVAR/GCOS/WMO workshop on indices and indicators for climate extremes. Workshop summary.” Clim. Chang., Vol. 42, 3–7, DOI: 10.1007/978-94-015-9265-9_2.

    Article  Google Scholar 

  • Kay, A. L., Davies, H. N., Bell, V. A., and Jones, R. G. (2009). “Comparison of uncertainty sources for climate change impacts: Flood frequency in england.” Clim. Chang., Vol. 92, 41–63, DOI: 10.1007/s10584-008-9471-4.

    Article  Google Scholar 

  • Kharin, V. V., Zwiers, F. W., Zhang, X., and Hegerl, G. C. (2007). “Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations.” Journal of Climate, Vol. 20, No. 8, 1419–1444, DOI: 10.1175/JCLI4066.1.

    Article  Google Scholar 

  • Lee, W.-S., Chun, J. A., and Kang, K. (2014). “Development and application of GIS-based PRISM integration through a plugin approach.” Journal of Hydrology, Vol. 513, 58–67, DOI: 10.1016/j.jhydrol.2014.03.029.

    Article  Google Scholar 

  • Maurer, E. P., Hidalgo, H. G., and Das, T. (2010). “The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California.” Hydrol. Earth Syst. Sc., Vol. 14, 1125–1138, DOI: 10.5194/hess-14-1125-2010.

    Article  Google Scholar 

  • Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., and Nijssen, B. (2002). “A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States.” Journal of Climate, Vol. 15, No. 22, 3237–3251, DOI: 10.1175/1520-0442(2002).15<3237:ALTHBD>2.0.CO;2.

    Article  Google Scholar 

  • Miller, W. P., DeRosa, G. M., Gangopadhyay, S., and Valdes, J. B. (2013). “Predicting regime shifts in flow of the Gunnison River under changing climate conditions.” Water Resour. Res., Vol. 49, 2966–2974, DOI: 10.1002/wrcr.20215.

    Article  Google Scholar 

  • Min, S.-K., Zhang, X., Zwiers, F. W., and Hegerl, G. C. (2011). “Human contribution to more-intense precipitation extremes.” Nature, Vol. 470, 378–381, DOI: 10.1038/nature09763.

    Article  Google Scholar 

  • Monk, W. A., Peters, D. L., Curry, A. R., and Baird, D. J. (2011). “Quantifying trends in indicator hydroecological variables for regime-based groups of Canadian rivers.” Hydrol. Process., Vol. 25, No. 19, 3086–3100, DOI: 10.1002/hyp.8137.

    Google Scholar 

  • Murdock, T. Q., Cannon, A. J., and Sobie, S. R. (2013). Statistical downscaling of future climate projections, Report (No.KM170-12-1236), Pacific Climate Impacts Consortium (PCIC), Canada.

    Google Scholar 

  • Murphy, A. H. (1997). “The Economic value of weather and climate forecasts.” Cambridge University Press, Cambridge, pp. 19–74, ISBN: 9780521434201.

    Google Scholar 

  • Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S., Webb, M. J., Collins, M., and Stainforth, D. A. (2004). “Quantification of modelling uncertainties in a large ensemble of climate change simulations.” Nature, Vol. 430, 768–772, DOI: 10.1038/nature02771.

    Article  Google Scholar 

  • Osborn, H. B. (1984). “Estimating precipitation in mountainous regions.” J. Hydraul. Eng., Vol. 110, 1859–1863, DOI: 10.1061/(ASCE) 0733-9429(1984).10:12(1859).

    Article  Google Scholar 

  • Petrik, R., Baldauf, M., Schlunze, H., and Gassmann, A. (2011). “Validation of a mesoscale weather prediction model using subdomain budgets.” Tellus A, Vol. 63, No. 4 pp. 707–726, DOI: 10.1111/j.1600-0870.2011.00528.x.

    Article  Google Scholar 

  • Phillips, D. L., Dolph, J., and Marks, D. (1992). “A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain.” Agr. Forest Meteorol., Vol. 58, 119–141, DOI: 10.1016/0168-1923(92)90114-J.

    Article  Google Scholar 

  • Pouline, A., Brissette, F., Leconte, R., Arsenault, R., and Maloet, J.-S. (2011). “Uncertainty of hydrological modelling in climate change impact studies in a Canadian, snow-dominated river basin.” J. Hydrol., Vol. 409, 626–636, DOI: 10.1016/j.jhydrol.2011.08.057.

    Article  Google Scholar 

  • Rinke, A., Marbaix, P., and Dethloff, K. (2004). “Internal variability in Arctic regional climate simulations: Case study for the SHEBA year.” Clim. Res., Vol. 27, 197–209, DOI: 10.3354/cr027197.

    Article  Google Scholar 

  • Roman, D. C., Vogel, R. M., and Schwarz, G. E. (2012). “Regional regression models of watershed suspended-sediment discharge for the eastern United States.” J. Hydrol., Vol. 472–473, pp. 53–62, DOI: 10.1016/j.jhydrol.2012.09.011.

    Article  Google Scholar 

  • Salathe, E. P., Steed, R., Mass, C. F., and Pahn, Z. (2009). “A highresolution climate model for the United States Pacific Northwest: Mesoscale feedbacks and local responses to climate change.” J. Clim., Vol. 21, 5708–5726, DOI: 10.1175/2008JCLI2090.1.

    Article  Google Scholar 

  • Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., and Bronaugh, D. (2013). “Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate.” J. Geophys. Res., Vol. 118, No. 4, 1716–1733, DOI: 10.1002/jgrd.50203.

    Google Scholar 

  • Shin, S. C., Kim, M. K., Suh, M. S., Rha, D. K., Jang, D. H., Kim, C. S., Lee, W. S., and Kim, Y. H. (2008).“Estimation of high resolution gridded precipitation using GIS and PRISM.” Atmosphere, Vol. 18, 71–81 (in Korean).

    Google Scholar 

  • Swets, J. A. (1986). “Form of empirical ROCs in discrimination and diagnostic tasks: Implications for theory and measurement of performance.” Psychol. Bull., Vol. 99, 181–198, DOI: 10.1037/0033-2909.99.2.181.

    Article  Google Scholar 

  • Tebaldi, C., Hayhoe, K., Arblaster, J. M., and Meehl, G. A. (2006). “Going to the extremes: An intercomparison of model-simulated historical and future changes in extreme events.” Climatic Change, Vol. 79, Nos. 3–4, pp. 185–211, DOI: 10.1007/s10584-006-9051-4.

    Article  Google Scholar 

  • Thornton, P., Running, S. W., and White, M. A. (1997). “Generating surfaces of daily meteorological variables ovr large regions of complex terrain.” J. Hydrol., Vol. 190, 214–251, DOI: 10.1016/S0022-1694(96)03128-9.

    Article  Google Scholar 

  • Vogel, R. M., Wilson, I., and Daly, C. (1999). “Regional regression models of annual streamflow for the United States.” J. Irrig. Drain. Eng., Vol. 125, 148–157, DOI: 10.1061/(ASCE)0733-9437(1999).25:3(148).

    Article  Google Scholar 

  • Wernberg, T., Smale, D. A., Tuya, F., Thomsen, M. S., Langlois, T. J., de Bettignies, T., Bennett, S., and Rousseaux, C. S. (2012). “An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot.” Nature Clim. Change, Vol. 3, No. 1, 78–82, DOI: 10.1038/nclimate1627.

    Article  Google Scholar 

  • Werner, A. T., Schnorbus, M. A., Shrestha, R. R., and Eckstrand, H. D. (2013). “Spatial and temporal change in the hydro-climatology of the Canadian portion of the Columbia River basin under multiple emissions scenarios.” Atmos. Ocean, Vol. 51, 357–379, DOI: 10.1080/07055900.2013.821400.

    Article  Google Scholar 

  • Wilby, R. L. and Harris, I. (2006). “A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK.” Water Resour. Res., Vol. 42, W02419, DOI: 10.1029/2005WR004065.

    Google Scholar 

  • Wilks, D. S. (1995). Statistical methods in the atmospheric sciences: An Introduction, Academic Press, San Diego, ISBN: 9780080541723.

    Google Scholar 

  • Wu, T. and Li, Y. (2013). “Spatial interpolation of temperature in the United States using residual kriging.” Appl. Geogr., Vol. 44, 112–120, DOI: 10.1016/j.apgeog.2013.07.012.

    Article  Google Scholar 

  • Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T.C., Trewin, B., and Zwiers, F. W. (2011). “Indices for monitoring changes in extremes based on daily temperature and precipitation data.” Wiley Interdiscip. Rev. Clim. Change, Vol. 2, No. 6, 851–870, DOI: 10.1002/wcc.147.

    Article  Google Scholar 

  • Zhang, X., Hegerl, G., Zwiers, F. W., and Kenyon, J. (2005). “Avoiding inhomogeneity in percentile-based indices of temperature extremes.” Journal of Climate, Vol. 18, No. 11, 1641–1651, DOI: 10.1175/JCLI3366.1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Il Eum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eum, HI., Kim, J.P. & Cho, J. High-resolution Climate Data From an Improved GIS-based Regression Technique for South Korea. KSCE J Civ Eng 22, 5215–5228 (2018). https://doi.org/10.1007/s12205-017-1441-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-1441-9

Keywords

Navigation