Skip to main content
Log in

Artificial neural network based method for seismic fragility analysis of steel frames

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Steel frames are widely used in earthquake areas but the fragility analysis of the steel frames is a time consuming process. The fragility curves are generally obtained based on a large number of time history analyses. In order to better simulate steel frames, the material and geometric uncertainties are considered. The moderate earthquake records are selected as the earthquake samples. Then the seismic damages induced by these samples are obtained using Finite Element Analysis (FEA) program. An Artificial Neural Network (ANN) is trained by these seismic damage data. Then the trained ANN is used to predict the seismic damage of the steel frame. When the training data is enough, the method has high prediction precision. The fragility curves based on the ANN prediction are the same as that based on the FEA program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alawadhi, E M. (2010). Finite element simulations using ANSYS Boca Raton: Taylor.

  • American Institute of Steel Construction (2005). Seismic provisions for structural steel buildings, Chicago: American Institute of Steel Construction.

  • American Institute of Steel Construction (2010). Specification for structural steel buildings, Chicago: American Institute of Steel Construction.

  • Amr S. Elnashai and Luigi Di Sarno (2008). Fundamentals of earthquake engineering, Wiley and Sons, UK.

    Google Scholar 

  • Bakhary, Norhisham, Hong Hao, and Andrew J. Deeks (2007). “Damage detection using artificial neural network with consideration of uncertainties.” Eng Struct, Vol. 29, pp. 2806–2815, DOI: 10.1016/j.engstruct. 2007.01.013.

    Article  Google Scholar 

  • Gao, S., Zhang, Z., and Cao, C. (2011). “Road traffic freight volume forecast using support vector machine combining forecasting.” J. Software, Vol. 6, No. 9, pp. 1680–1687, DOI: 10.4304/jsw.6.9.1680-1687.

    Google Scholar 

  • González, María P. and José L. Zapico (2008). “Seismic damage identification in buildings using neural networks and modal data.” Computers and Structures, Vol. 86, No. 2008, pp. 416–426 DOI: 10.1016/j.compstruc.2007.02.021.

    Article  Google Scholar 

  • Hamdia, K. M., Msekh, M. A., Silani, M., Vu-Bac, N., Zhuang, X., Nguyen-Thoi, T., and Rabczuk, T. (2015). “Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling.” Composite Structure, Vol. 133, pp. 1177–1190, DOI: 10.1016/j.compstruct.2015.08.051.

    Article  Google Scholar 

  • Hariri-Ardebili, M. A., Sattar, S., and Estekanchi, H. E. (2014). “Performance-based seismic assessment of steel frames using endurance time analysis.” Eng Struct., Vol. 69, pp. 216–34, DOI: 10.1016/j.engstruct.2014.03.019.

    Article  Google Scholar 

  • Huang, C. S., Hung, S. L., Wen, C. M., and Tu, T. T. (2003). “A neural network approach for structural identication and diagnosis of a building from seismic response data.” Earthquake Engng Struct. Dyn., Vol. 32, pp. 187–206, DOI: 10.1002/eqe.219.

    Article  Google Scholar 

  • Kalkan, E. and Kunnath, S. K. (2007). “Assessment of current nonlinear static procedures for seismic evaluation of buildings.” Eng Struct, Vol. 29, No. 3, pp. 305–16, DOI: 10.1016/j.engstruct.2006.04.012.

    Article  Google Scholar 

  • Karim, K. R. and Yamazaki, F. (2007). “Effect of isolation on fragility curves of highway bridges based on simplified approach.” Soil. Dyn. Earthquake Eng., Vol. 27, pp. 414–426, DOI: 10.1016/j.soildyn. 2006.10.006.

    Article  Google Scholar 

  • Lupoi, G., Franchin, P., Lupoi, A., and Pinto, P. E (2006). “Seismic fragility analysis of structural systems.” J. Eng. Mech, Vol. 132, No. 4, pp. 385–395, DOI: 10.1061/(ASCE)0733-9399(2006)132:4(385).

    Article  Google Scholar 

  • Martin T. Hagan, Howard. B. Demuth, and Mark Beale (2002). Neural network design, USA: Martin Hagan.

    Google Scholar 

  • Pan, Y., Agrawal, A. K., ASCE, M., and Ghosn, M. (2007). “Seismic fragility of continuous steel highway bridges in New York state.” J. Bridge Eng., Vol. 12, No. 6, pp. 689–699, DOI: 10.1061/ASCE1084-0702 200712:6-689.

    Article  Google Scholar 

  • Pan, Y., Agrawal, A. K., ASCE, M., Ghosn, M., ASCE, M., and Alampalli, S., and ASCE, F. (2010). “Seismic Fragility of Multispan Simply Supported Steel Highway Bridges in New York State. I: Bridge Modeling, Parametric Analysis, and Retrofit Design.” J. Bridge Eng., Vol. 15, No. 5, pp. 448–461, DOI: 10.1061/(ASCE)BE.1943-5592.0000085.

    Article  Google Scholar 

  • Park, Y. J., Ang, A. H. S., and Wen, Y. K. (1985). “Seismic damage analysis of reinforced concrete buildings.” J. Struct. Eng., Vol. 111, No. 4, pp. 740–757, DOI: 10.1016/0045-7949(92)90132-J.

    Article  Google Scholar 

  • Parsaei Maram, Mohammad, K. Rama, Mohan Rao, and Ali Poursalehi (2013). “Anartificial neural network for prediction of seismic behavior in RCbuildings with and without infill walls.” International Journal of Modern Engineering Research, Vol. 3, No. 5, pp. 3071–1308.

    Google Scholar 

  • Rafiq, M. Y., Bugmann, G, and Easterbrook, D. J. (2001). “Neural network design for engineering applications.” J. Comp. Struct., Vol. 79, pp. 1541–1552, DOI: 10.1016/S0045-7949(01)00039-6.

    Article  Google Scholar 

  • Rodriguez, Mario E. and Daniel Padilla (2009). “A damage index for the seismic analysis of reinforced concrete members.” Journal of Earthquake Engineerin, Vol. 13, pp. 364–383, DOI: 10.1080/13632460802597893.

    Article  Google Scholar 

  • Sterritt, Roy (2003). “Autonomic computing: The natural fusion of soft computing and hard computing.” IEEE, Vol. 5, pp. 4754–4759, DOI: 10.1109/ICSMC.2003.1245735

    Google Scholar 

  • Topçu, I. B. and Saridemir, M. (2008). “Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic.” Comput. Mater. Sci., Vol. 42, No. 1, pp. 72–82, DOI: 10.1016/j.commatsci.2007. 06.011.

    Article  Google Scholar 

  • Vu-Bac, N., Lahmer, T., Zhuange, X., Nguyen-Thoi, T., and Rabczuk, T. (2016). “A software framework for probabilistic sensitivity analysis for computationally expensive models.” Advances in Engineering Software, Vol. 100, pp. 19–31, DOI: 10.1016/j.advengsoft.2016. 06.005.

    Article  Google Scholar 

  • Wu, X., Ghaboussi, J., and Garrett, J. H. (1992). “Use of neural networks in detection of structural damage.” Computers & Structures., Vol. 42, No. 4, pp. 649–659, DOI: 10.1016/0045-7949(92)90132-J.

    Article  MATH  Google Scholar 

  • Yeung, W. T. and Smith, J. W. (2005). “Damage detection in bridges using neural networks for pattern recognition of vibration signatures.” Eng. Struct., Vol. 27, No. 5, pp. 685–698, DOI: 10.1016/j.engstruct. 2004.12.006.

    Article  Google Scholar 

  • Yun, C.-B. and Bahng, E. Y. (2000). “Substructural identification using neural networks.” Computers & Structures, Vol. 77, No. 1, pp. 41–52, DOI: 10.1016/S0045-7949(99)00199-6.

    Article  Google Scholar 

  • Zadeh, L. A. (1994). “Soft computing and fuzzy logic.” IEEE Software, Vol. 11, No. 6, pp. 48–56, DOI: 10.1142/9789814261302_0042.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhang, Z. Artificial neural network based method for seismic fragility analysis of steel frames. KSCE J Civ Eng 22, 708–717 (2018). https://doi.org/10.1007/s12205-017-1329-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-1329-8

Keywords

Navigation