Skip to main content
Log in

Optimal isosceles trapezoid cross section of laterally loaded piles based on friction soil arching

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The paper presents a novel analytical solution to determine an optimal isosceles trapezoid cross-section of stabilizing piles subjected to the lateral load. In view of the pile-soil interaction mechanical analysis on the friction soil arching between the adjacent stabilizing piles, a general mechanical model for analyzing the behavior of the laterally loaded stabilizing piles with isosceles trapezoid cross-section is put forward. The reasonable net pile spacing expression for all kinds of isosceles trapezoid section piles is established via the analytical deduction, and it indicates that there is a positive relationship between the reasonable net pile spacing and gradient of pile sidewall. In consideration of the strength failure possibility in the apex of friction soil arching, the complete expressions of both the gradient of pile sidewall and corresponding reasonable net pile spacing of stabilizing piles can be established. The case study of Jinle landslide verifies that the reasonable pile spacing obtained by the presented model is slightly greater than that of the conventional design scheme, which shows that the stabilizing piles with optimal isosceles trapezoid cross-section can results in reducing the investment of the whole stabilizing piles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basu, D. and Salgado, R. (2008). “Analysis of laterally loaded piles with rectangular cross sections embedded in layered soil.” International Journal For Numerical And Analytical Methods In Geomechanics, Vol. 32, No. 7, pp. 721–744, DOI: 10.1002/nag.639.

    Article  MATH  Google Scholar 

  • Bouafia, A. (2007). “Single pile under horizontal loads in sand: determination of p-y curves from the prebored pressure meter test.” Geotechnical and Geological Engineering, Vol. 25, No. 3, pp. 283–301, DOI: 10.1007/s10706-006-9110-7.

    Article  Google Scholar 

  • Chang, D. W., Lin, B. S., and Cheng, S. H. (2009). “Lateral load distributions on grouped piles from dynamic pile-to-pile interaction factors.” International Journal For Numerical And Analytical Methods In Geomechanics, Vol. 33, No. 2, pp. 173–191, DOI: 10.1002/nag.706.

    Article  MATH  MathSciNet  Google Scholar 

  • Chen, L. T. and Poulos, H. G. (1993). “Analysis of pile-soil interaction under lateral loading using infinite and finite element.” Computers and Geotechnics, Vol. 15, No. 4, pp. 189–220, DOI: 10.1016/0266-352X(93)90001-N.

    Article  Google Scholar 

  • Chevalier, B., Combe, G., and Villard, P. (2007). Load transfers and arching effects in granular soil layer, 18eme Congres Franrais de Mecanique Grenoble aout 27-31.

    Google Scholar 

  • China University of Geosciences (2007). Control scheme report of Jinle landslide in the Three Gorges Reservoir Region, Xingshan County, Hubei Province, pp. 1–22.

    Google Scholar 

  • Choi, Y. S., Basu, D., Prezzi, M., and Salgado, R. (2014a). “Study on laterally loaded piles with rectangular and circular cross sections.” Geomechanics and Geoengineering: An International Journal, DOI: 10.1080/17486025.2014.902119.

    Google Scholar 

  • Choi, Y. S., Basu, D., Salgado, R., and Prezzi, M. (2014b). “Response of laterally loaded rectangular and circular piles in soils with properties varying with depth.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 140, No. 4, CID: 04013049 1-12, DOI: 10.1061/(ASCE)GT.1943-5606.0001067.

    Google Scholar 

  • Durrani, J. K., Ellis, E. A., and Reddish, D. J. (2006). “Modelling lateral pile-soil interaction for a row of piles in a frictional soil.” 4th International FLAC Symp, Numerical Modelling Geomech, pp. 231–238.

    Google Scholar 

  • Ellis, E. A., Durrani, I. K., and Reddish, D. J. (2010). “Numerical modelling of discrete pile rows for slope stability and generic guidance for design.” Geotechnique, Vol. 60, No. 3, pp. 185–195, DOI: 10.1680/geot.7.00090.

    Article  Google Scholar 

  • Fan, C. C. and Long, J. H. (2007). “A modulus-multiplier approach for non-linear analysis of laterally loaded pile groups.” International Journal For Numerical And Analytical Methods In Geomechanics, Vol. 31, No. 9, pp. 1117–1145, DOI: 10.1002/nag.582.

    Article  MATH  Google Scholar 

  • Frank, R. and Pouget, P. (2008). “Experimental pile subjected to long duration thrusts owingto a moving slope.” Geotechnique, Vol, 58, No, 8, pp. 645–658, DOI: 10.1680/geot. 2008.58.8.645.

    Article  Google Scholar 

  • Fukuoka, M. (1977). “The effect of horizontal loads on piles due to landslides.” Proc. Spec. Sess. 10, 9th Int. conf. Soil Mech. Found. Eng., Tokyo, pp. 27–42.

    Google Scholar 

  • Guo, W. D. (2009). “Nonlinear response of laterally loaded piles and pile groups.” International Journal For Numerical And Analytical Methods In Geomechanics, Vol. 33, No. 7, pp. 879–914, DOI: 10.1002/nag.746.

    Article  MATH  Google Scholar 

  • Handy, R. L. (1985). “The arch in soil arching.” Journal of Geotechnical Engineering, Nol. 111, No. 3, pp. 302–318, DOI: 10.1061/(ASCE)0733-9410(1985)111:3(302).

    Article  Google Scholar 

  • Hello, B. L. and Villard, P. (2009). “Embankments reinforced by piles and geosynthetics—Numerical and experimental studies dealing with the transfer of load on the soil embankment.” Engineering Geology, Vol. 106, No. 1-2, pp. 78–91, DOI: 10.1016/j.enggeo. 2009.03.001.

    Article  Google Scholar 

  • Hirai, H. (2014). “Settlement analysis of rectangular piles in nonhomogeneous soil using a Winkler model approach.” International Journal For Numerical And Analytical Methods In Geomechanics, Vol. 38, No. 12, pp. 1298–1320, DOI: 10.1002/nag.2270.

    Article  Google Scholar 

  • Hu, X. L., Li, C. D., and Wang, L. Q. (2007). “Economical optimum design on section dimension of anti-sliding piles in landslides.” Geological Science and Technology Information, Vol. 26, No. 3, pp. 71–74, (in Chinese with English abstract)

    Google Scholar 

  • Ito, T. and Matsui, T. (1975). “Methods to estimate lateral force acting on stabilizing piles.” Soils and Foundations, Vol. 15, No. 4, pp. 43–59.

    Article  Google Scholar 

  • Jeong, S., Kim, B., Won, J., and Lee, J. (2003). “Uncoupled analysis of stabilizing piles in weathered slopes.” Computers and Geotechnics, Vol. 30, No. 8, pp. 671–682, DOI: 10.1016/j.compgeo.2003.07.002.

    Article  Google Scholar 

  • Kim, B. T. and Kim, Y. S. (1999). “Back analysis for prediction and behavior of laterally loaded single piles in sand.” KSCE Journal of Civil Engineering, Vol. 3, No. 3, pp. 272–288, DOI: 10.1007/BF02823813.

    MathSciNet  Google Scholar 

  • Lee, C. Y., Hull, T. S., and Poulos, H. G. (1995). “Simplified pile-slope stability analysis.” Computers and Geotechnics, Vol. 17, No. 1, pp. 1–16, DOI: 10.1016/0266-352X (95)91300-S

    Article  Google Scholar 

  • Leussink, H. and Wenz, K. P. (1969). “Storage yard foundations on soft cohesive soils.” Proc. 7th Int. Conf. on soil mech and Found. Eng. Moscow, pp.149–155.

    Google Scholar 

  • Li, C. D., Tang, H. M., Hu, X. L., Wang, L. Q., and Liu, Q. T. (2012). “Research on load transferring and sharing law of anti-sliding piles under different isosceles trapezoid cross-section.” Advanced Materials Research, Vols. 446-449, pp. 3007–3014.

    Google Scholar 

  • Li, C. D., Tang, H. M., Ge, Y. F., Hu, X. L., and Wang, L. Q. (2014). “Application of back-propagation neural network on bank destruction forecasting for accumulative landslides in the Three Gorges Reservoir Region, China.” Stochastic Environmental Research And Risk Assessment, Vol. 28, No. 6, pp. 1465–1477, DOI: 10.1007/s00477-014-0848-9

    Article  Google Scholar 

  • Li, C. D., Tang, H. M., Hu, X. L., and Wang, L. Q. (2013b). “Numerical modelling study of the load sharing law of anti-sliding piles based on the soil arching effect for Erliban landslide, China.” KSCE Journal of Civil Engineering, Vol. 17, No. 6, pp. 1251–1262, DOI: 10.1007/s12205-013-0074-x.

    Article  Google Scholar 

  • Li, C. D., Liu, X. W., Liu, Q. T., and Liu, T. (2016). “Influence of isosceles trapezoid cross-section on the reinforcement effect of stabilizing piles.” KSCE Journal of Civil Engineering, Vol. 20, No. 7, pp. 2670–2676, DOI: 10.1007/s12205-016-0689-9

    Article  Google Scholar 

  • Li, C. D. (2009). Study on interaction mechanism between anti-slide pile and landslide mass and pile optimization, Ph. D. Thesis. China University of Geosciences, Wuhan, (in Chinese).

    Google Scholar 

  • Li, C. D., Wang, L. Q., Jing, H. Y., and Liu, Q. T. (2013a). “Protection control scheme and evaluation of effects on pipeline crossing beneath landslide area.” Journal of Pipeline Systems Engineering and Practice, Vol. 4, No. 1, pp. 41–48, DOI: 10.1061/(ASCE)PS.1949-1204.0000130.

    Article  Google Scholar 

  • Li, C. D., Wu, J. J., Tang, H. M., Wang, J., Chen, F., and Liang, D. M. (2015). “A novel optimal plane arrangement of stabilizing piles based on soil arching effect and stability limit for 3D colluvial landslides.” Engineering Geology, Vol. 195, pp. 236–247, DOI: 10.1016/j.enggeo.2015.06.018.

    Article  Google Scholar 

  • Lirer, S. (2012). “Landslide stabilizing piles: Experimental evidences and numerical interpretation.” Engineering Geology, Vols. 149-150, pp. 70–77, 2012, DOI: 10.1016/j.enggeo.2012.08.002.

    Article  Google Scholar 

  • Liu, X. L., Zhang, D. D., and Liu, K. (2010). “Model test investigation on rectangular section composite micro-pile structure for earth slope reinforcement.” Advanced Materials Research, Vols. 163-167, pp. 2256–2261, DOI: 10.4028/www.scientific.net/AMR.163-167.2256.

    Article  Google Scholar 

  • Martin, G. R. and Chen, C. Y. (2005). “Response of piles due to lateral slope movement.” Computers and Structures, Vol. 83, No. 8-9, pp. 588–598, DOI: 10.1016/j.compstruc. 2004.11.006.

    Article  Google Scholar 

  • Nunez, M. A., Briançon, L., and Dias, D. (2013). “Analyses of a pilesupported embankment over soft clay: Full-scale experiment, analytical and numerical approaches.” Engineering Geology, Vol. 153, pp. 53–67, DOI: 10.1016/j.enggeo.2012.11.006.

    Article  Google Scholar 

  • Poulos, H. G. (1995). “Design of reinforcing piles to increase slope stability.” Canadian Geotechnical Journal, Vol. 32, No. 5, pp. 808–818, DOI: 10.1139/t95-078.

    Article  Google Scholar 

  • Reese, L. C., Wang, S. T., and Fouse, J. L. (1992). “Use of drilled shafts in stabilizing a slope.” Proceedings of Stability and Performance of Slopes and Embankments, pp. 1318–1332.

    Google Scholar 

  • Rowe, R. K. and Poulos, H. G. (1979). “A method for predicting the effect of piles on slope behaviour.” Third International Conference on Numerical Methods in Geomechanics, Vol. 2, No. 6, pp. 1073–1085.

    Google Scholar 

  • Seo, H., Basu, D., Prezzi, M., and Salgado, R. (2009). “Load-settlement response of rectangular and circular piles in multilayered soil.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 3, pp. 420–430, DOI: 10.1061/(ASCE)1090-0241(2009) 135:3(420).

    Article  Google Scholar 

  • Song, Y. S., Hong, W. P., and Woo, K. S. (2012). “Behavior and analysis of stabilizing piles installed in a cut slope during heavy rainfall.” Engineering Geology, Vols. 129-130, pp. 56–67, DOI: 10.1016/j.enggeo.2012.01.012.

    Article  Google Scholar 

  • Tang, H. M., Hu, X. L., Xu, C., Li, C. D., Yong, R., and Wang, L. Q. (2014). “A novel approach for determining landslide pushing force based on landslide-pile interactions.” Engineering Geology, Vol. 182, pp. 15–24, DOI: 10.1016/j.enggeo.2014.07.024.

    Article  Google Scholar 

  • Terzaghi, K. (1943). Theoretical soil mechanics, John Wiley & Sons, New York, NY, pp. 76–85.

    Book  Google Scholar 

  • Vardoulakis, L., Graf, B., and Gudehus, G. (1981). “Trap-door problem with dry sand: A statical approach based upon model test kinematics.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 5, No. 1, pp. 57–78, DOI: 10.1002/nag. 1610050106.

    Article  Google Scholar 

  • Wei, W. B. and Cheng, Y. M. (2009). “Strength reduction analysis for slope reinforced with one row of piles.” Computers and Geotechnics, Vol. 36, No. 7, pp. 1176–1185, DOI: 10.1016/j.compgeo.2009.05.004.

    Article  Google Scholar 

  • Wenz, K. P. (1973). “Large scale tests for determination of lateral loads on piles in soft cohesive soils.” Proc 8th Int. Conf. on soil mech and Found. Eng, Moscow, pp. 110–116.

    Google Scholar 

  • Zhou, C. M., Shao, W., and van Westen, C. J. (2014). “Comparing two methods to estimate lateral force acting on stabilizing piles for a landslide in the Three Gorges Reservoir, China.” Engineering Geology, Vol. 173, pp. 41–53, DOI: 10.1016/j.enggeo.2014.02.004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changdong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Li, C., Liu, Q. et al. Optimal isosceles trapezoid cross section of laterally loaded piles based on friction soil arching. KSCE J Civ Eng 21, 2655–2664 (2017). https://doi.org/10.1007/s12205-017-1311-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-1311-5

Keywords

Navigation