Skip to main content
Log in

Influence of seismic incident angle on response of symmetric in plan buildings

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The objective of this paper is the investigation of the influence of the seismic incident angle on the response values of symmetric in plan buildings subjected to bi-directional horizontal ground motion. Firstly, a set of symmetric buildings is studied by means of linear response history analysis. The maximum response values over all incident angles are determined using well established analytical formulae. It is demonstrated that for symmetric buildings possessing equal stiffness along two orthogonal horizontal axes the maximum value of some vectorial response quantities (resultant displacements, resultant moments of some columns) does not depend on the orientation of the seismic action. On the contrary, the seismic incident angle is essential for the rest response quantities of such buildings, as well as for all the response quantities of symmetric buildings with different stiffness along the two structural axes. In addition, the same buildings are analyzed by means of non-linear response history analysis, with seismic components having several different orientations with regard to the structural axes. Similar conclusions are derived for the nonlinear range of behaviour too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amiri, J. V., Ahmadi, O. Y., and Ganjavi, B. (2008). “Assessment of reinforced concrete buildings with shear wall based on Iranian Seismic Code (Third edition).” J. Appl. Sci., Vol. 8, No. 23, pp. 4274–4283, DOI: 10.3923/jas.2008.4274.4283.

    Article  Google Scholar 

  • Anastasiadis, K. (1993). “Directions sismiques défavorables et combinaisons défavorables des efforts.” Ann I T B T P, Vol. 512, pp. 83–99.

    Google Scholar 

  • Anastasiadis, K., Avramidis, I., and Panetsos, P. (2002). “Concurrent design forces in structures under three-component orthotropic seismic excitation.” Earthq. Spectra, Vol. 18, pp. 1–17, DOI: 10.1193/1.1463040.

    Article  Google Scholar 

  • Arjmandi, K., Estekanchi, H., and Vafai, A. (2009). “Correlation between structural performance levels and damage indexes in steel frames subjected to earthquakes.” Scientia Iranica Transaction a-Civil Engineering, Vol. 16, No. 2, pp. 147–155.

    Google Scholar 

  • American Society of Civil Engineers (2008). ASCE/SEI 41-06, Seismic Rehabilitation of Existing Buildings, Reston, Virginia.

  • Athanatopoulou, A. M. (2005). “Critical orientation of three correlated seismic components.” Eng. Struct., Vol. 27, pp. 301–312, DOI: 10.1016/j.engstruct.2004.10.011.

    Article  Google Scholar 

  • Athanatopoulou, A. M. and Avramidis, I. E. (2006). “Effects of seismic directivity on structural response.” Proc., Second FIB Congress, Naples, Italy.

  • Athanatopoulou, A. M., Tsourekas, A., and Papamanolis, G. (2005). “Variation of response with incident angle under two horizontal correlated seismic components.” Proc., Earthquake Resistant Engineering Structures V, Skiathos, Greece.

    Google Scholar 

  • Carr, A. J. (2004). Ruaumoko–a Program for Inelastic Time-History Analysis, Program manual, Department of Civil Engineering, University of Canterbury, New Zealand.

    Google Scholar 

  • Dimova, S. L. and Negro, P. (2005). “Seismic assessment of an industrial frame structure designed according to Eurocodes. Part 2: Capacity and vulnerability.” Eng. Struct., Vol. 27, No. 5, pp. 724–735, DOI: 10.1016/j.engstruct.2004.12.009.

    Article  Google Scholar 

  • Elenas, A. (2000). “Correlation between seismic acceleration parameters and overall structural damage indices of buildings.” Soil Dyn. Earthquake Eng., Vol. 20, Nos. 1-4, pp. 93–100, DOI: 10.1016/S0267-7261(00)00041-5.

    Article  Google Scholar 

  • European Committee for Standardization (2004). Eurocode 8, Design of Structures for Earthquake Resistance, Brussels.

  • Federal Emergency Management Agency (2004). FEMA 440, Improvement of nonlinear static seismic analysis procedures, Washington DC.

  • Fontara, I-K.M., Kostinakis, K. G., Manoukas, G. E., and Athanatopoulou, A. M. (2015). “Parameters affecting the seismic response of buildings under bi-directional excitation.” Structural Engineering and Mechanics, Vol. 53, No. 5, pp. 957–979, DOI: 10.12989/sem.2015.53.5.957.

    Article  Google Scholar 

  • Kostinakis, K. G., Athanatopoulou, A. M., and Avramidis, I. E. (2008). “Maximum response and critical incident angle in special classes of buildings subjected to two horizontal seismic components.” Proc., 6th GRACM International Congress on Computational Mechanics, Thessaloniki, Greece, paper No. 1108.

    Google Scholar 

  • Kumar, N. K. and Gajjar, R. K. (2013). “Non-linear response of twoway asymmetric multistorey building under biaxial excitation.” Internatl J. Eng. Tech., Vol. 5, No. 2, pp. 1162–1168.

    Google Scholar 

  • Kunnath, S. K., Reinhorn, A. M., and Lobo, R. F. (1992). IDARC Version 3: A Program for the Inelastic Damage Analysis of RC Structures, Technical Report NCEER-92-0022, National Centre for Earthquake Engineering Research, State University of New York, Buffalo NY,USA.

    Google Scholar 

  • Lopez, O. A., Chopra, A. K., and Hernadez, J. J. (2000). “Critical response of structures to multicomponent earthquake excitation.” Earthq. Eng. Struct. Dyn., Vol. 29, pp. 1759–1778, DOI: 10.1002/1096-9845 (200012)29:12<1759::AID-EQE984>3.0.CO;2-K.

    Article  Google Scholar 

  • Lopez, O. A., Chopra, A. K., and Hernadez, J. J. (2001). “Evaluation of combination rules for maximum response calculation in multicomponent seismic analysis.” Earthq. Eng. Struct. Dyn., Vol. 30, pp. 1379–1398, DOI: 10.1002/eqe.68.

    Article  Google Scholar 

  • Lopez, O. A. and Torres, R. (1997). “The critical angle of seismic incidence and the maximum structural response.” Earthq. Eng. Struct. Dyn., Vol. 26, pp. 881–894, DOI: 10.1002/(SICI)1096-9845 (199709)26:9<881::AID-EQE674>3.0.CO;2-R.

    Article  Google Scholar 

  • Lucchini, A., Monti, G., and Kunnath, S. (2011). “Nonlinear response of two-way asymmetric single-story building under biaxial excitation.” J. Struct. Eng., Vol. 137, No. 1, pp. 34–40, DOI: 10.1061/(ASCE)ST.1943-541X.0000266.

    Article  Google Scholar 

  • MacRae, G. A. and Mattheis, J. (2000). “Three dimensional steel building response to near-fault motions.” J. Struct. Eng. -ASCE, Vol. 126, No. 1, pp. 117–26, DOI: 10.1061/(ASCE)0733-9445(2000)126:1 (117).

    Article  Google Scholar 

  • Menun, C. and Der Kiureghian, A. (1998). “A replacement for the 30%, 40% and SRSS rules for multicomponent seismic analysis.” Earthq. Spectra, Vol. 14, No. 1, pp. 153–163, DOI: 10.1193/1.1585993.

    Article  Google Scholar 

  • Menun, C. and Der Kiureghian A. (2000a). “Envelopes for seismic response vectors. I: Theory.” J. Struct. Eng., Vol. 126, pp. 467–473, DOI: 10.1061/(ASCE)0733-9445(2000)126:4(467)

    Article  Google Scholar 

  • Menun, C. and Der Kiureghian A. (2000b). “Envelopes for seismic response vectors. II: Application.” J. Struct. Eng., Vol. 126, pp. 474–481, DOI: 10.1061/(ASCE)0733-9445(2000)126:4(474).

    Article  Google Scholar 

  • Nguyen, V. T and Kim, D. (2013). “Influence of incident angles of earthquakes on inelastic responses of asymmetric-plan structures.” Struct. Eng. Mech., Vol. 45, No. 3, pp. 373–389, DOI: 10.12989/sem.2013.45.3.373.

    Article  Google Scholar 

  • Pacific Earthquake Engineering Research Centre (PEER). (2003). Strong Motion Database, http://peer.berkeley.edu/smcat/.

  • Park, Y. J. and Ang, A. H.-S. (1985). “Mechanistic seismic damage model for reinforced-concrete.” J. Struct. Eng., Vol. 111, No. 4, pp. 722–739, DOI: 10.1061/(ASCE)0733-9445(1985)111:4(722).

    Article  Google Scholar 

  • Park, Y. J., Ang, A.H.-S. and Wen, Y. K. (1987). “Damage-limiting aseismic design of buildings.” Earthq. Spectra, Vol. 3, No. 1, pp. 1–26, DOI: 10.1193/1.1585416.

    Article  Google Scholar 

  • Penzien, J. and Watabe, M. (1975). “Characteristics of 3-D earthquake ground motions.” Earthquake Eng. Struct. Dyn., Vol. 3, pp. 365–373, DOI: 10.1002/eqe.4290030407.

    Article  Google Scholar 

  • Quadri, S. A. and Madhuri, N. M. (2014). “of R.C.C. frames.” Internatl J. Civ. Eng. Tech., Vol. 5, No. 6, pp. 10–15.

    Google Scholar 

  • Rigato, A. B. and Medina, R. A. (2007). “Influence of angle of incidence on seismic demands for inelastic single-storey structures subjected to bi-directional ground motions.” Eng. Struct., Vol. 29, pp. 2593–2601, DOI: 10.1016/j.engstruct.2007.01.008.

    Article  Google Scholar 

  • Smeby, W. and Der Kiureghian, A. (1985). “Modal combination rules for multi-component earthquake excitation.” Earthquake Eng. Struct. Dyn., Vol. 13, pp. 1–12.

    Article  Google Scholar 

  • Williams, M. S. and Sexsmith, R. G. (1997). “Seismic assessment of concrete bridges using inelastic damage analysis.” Eng. Struct., Vol. 19, No. 3, pp. 208–216, DOI: 10.1016/S0141-0296(96)00104-6.

    Article  Google Scholar 

  • Yüksel, E. and Sürmeli, M. (2010). “Failure analysis of one-story precast structures for near-fault and far-fault strong ground motions.” Bull. Earthq. Eng., Vol. 8, pp. 937–953, DOI: 10.1007/s10518-009-9164-z.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos G. Kostinakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostinakis, K.G., Manoukas, G.E. & Athanatopoulou, A.M. Influence of seismic incident angle on response of symmetric in plan buildings. KSCE J Civ Eng 22, 725–735 (2018). https://doi.org/10.1007/s12205-017-1279-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-1279-1

Keywords

Navigation