Skip to main content
Log in

Use of Nonsteady-state Biofilm Model to characterize heterotrophic and autotrophic biomass within aerobic granules

  • Environmental Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

A pseudo-analytical solution for a Nonsteady-state Biofilm Model (NSBM) was used to describe heterotrophic and autotrophic biofilms within aerobic granules. This model was validated with the experimental results obtained from a granule-based SBR process that removes organics and ammonia simultaneously. The calibrated model (with boundary conditions including involved species, operating conditions, granular characteristics and biological reactions) predicted effluent COD and NH4 values that were in good agreement with the measured values. The model simulation showed that the increase of the substrate concentration did not dramatically influence the flux trends if the biomass concentration in the reactor is insufficient (less than 1000 mg VSS/L). The heterotrophic and autotrophic biofilms develop layer by layer on the outside of the aerobic granules. These can form simultaneously in independent patterns for substrate utilization and biomass growth. The NSBM could be an effective prediction method for the understanding of aerobic granulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adav, S. S., Lee, D. J., Show, K. Y., and Tay, J. H. (2008). “Aerobic granular sludge: Recent advances.” Biotechnol. Adv., Vol. 26, No. 5, pp. 411–423, DOI: 10.1016/j.biotechadv.2008.05.002.

    Article  Google Scholar 

  • APHA (American Public Health Association) (2005). Standard Methods for the Examination of Water and Wastewater. APHA, Washington, DC, USA.

    Google Scholar 

  • Atkinson, B. and How, S. Y. (1974). “The overall rate of substrate uptake (reaction) by microbial films. Part II. Effect of concentration and thickness with mixed microbial films.” Trans. Inst. Chem., Vol. 52, pp. 260–272.

    Google Scholar 

  • Beun, J. J., van Loosdrecht, M. C. M., and Heijnen, J. J. (2002). “Aerobic granulation in a sequencing batch airlift reactor.” Water. Res., Vol. 36, No. 3, pp. 702–712, DOI: 10.1016/S0043-1354(01)00250-0.

    Article  Google Scholar 

  • Cui, F. and Kim, M. (2013). “Use of steady-state biofilm model to characterize aerobic granular sludge.” Environ. Sci. Technology, Vol. 47, No. 21, pp. 12291–12296, DOI: 10.1021/es4025639.

    Article  Google Scholar 

  • Cui, F., Park, S., and Kim, M. (2014). “Characteristics of aerobic granulation at mesophilic temperatures in wastewater treatment.” Bioresour. Technol., Vol. 151, pp. 78–84, DOI: 10.1016/j.biortech.2013.10.025.

    Article  Google Scholar 

  • de Kreuk, M. K., Kishida, N., and van Loosdrecht, M. C. M. (2007). “Aerobic granular sludge–state of the art.” Water Sci. Technol., Vol. 155, Nos. 8–9, pp. 79–81, DOI: 10.2166/wst.2007.244.

    Google Scholar 

  • Eckenfelder, W. W. and Musterman, J. L. (1995). Activated sludge treatment of industrial wastewater, Technomic Publishing Company, Lancaster, Pa.

    Google Scholar 

  • Gonzalez-Gil, G., Seghezzo, L., Lettinga, G., and Kleerebezem, R. (2001). “Kinetics and mass-transfer phenomena in anaerobic granular sludge.” Biotechnol. Bioeng., Vol. 73, No. 2, pp. 125–134, DOI: 10.1002/bit.1044.

    Article  Google Scholar 

  • Henze, M., Gujer, W., Mino, T., and van Loosdrecht, M. (2000). Activated sludge models ASM1, ASM2, ASM2d and ASM3, IWA publsing, London, England.

    Google Scholar 

  • Keller, J. and Yuan Z. (2002). “Combined hydraulic and biological modelling and full-scale validation of SBR process.” Water Sci. Technol., Vol. 45, No. 6, pp. 219–228, DOI: 10.2166/wst.2002.244.

    Google Scholar 

  • Liu, Y. and Tay, J. H. (2004). “State of the art of biogranulatioin technology for wastewater treatment.” Biotechnol. Adv., Vol. 22, No. 7, pp. 533–563, DOI: 10.1016/j.biotechadv.2004.05.001.

    Article  Google Scholar 

  • Liu, Y. Q., Liu, Y., and Tay, J. H. (2004). “The effects of extracellular polymeric substances on the formation and stability of biogranules.” Appl. Microbiol. Biotechnol, Vol. 65, No. 2, pp. 143–148, DOI: 10.1007/s00253-004-1657-8.

    Article  Google Scholar 

  • Ni, B. J. and Yu, H. Q. (2010). “Mathematical modeling of aerobic granular sludge: A review.” Biotechnol. Adv., Vol. 28, No. 6, pp. 895–909, DOI: 10.1016/j.biotechadv.2010.08.004.

    Article  Google Scholar 

  • Ni, B. J., Yu, H. Q., and Sun, Y. J. (2008). “Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules.” Water Res., Vol. 42, Nos. 6–7, pp. 1583–1594, DOI: 10.1016/j.watres.2007. 11.010.

    Article  Google Scholar 

  • Nicolella, C., van Loosdrecht, M. C. M., and Heijnen, J. J. (1998). “Mass transfer and reaction in a biofilm airlift suspension reactor.” Chem. Eng. Sci., Vol. 53, No. 15, pp. 2743–2753, DOI: 10.1016/S0009-2509(98)00107-9.

    Article  Google Scholar 

  • Rittman, B. E. and McCarty, P. L. (1981). “Substrate flux into biofilms of any thickness.” J. Environ. Engr., Vol. 107, No. 4, pp. 831–849.

    Google Scholar 

  • Rittmann, B. E. (2001). Environmental biotechnology: Principles and application, McGraw-Hill, New York.

    Google Scholar 

  • Vazquez-Padin, J. R., Mosquera-Corral, A., Campos, J. L., Mendez, R., Carrera, J., and Perez, J. (2010). “Modelling aerobic granular SBR at variable COD/N ratios including accurate description of total solids concentration.” Biochem. Eng. J., Vol. 49, No. 2, pp. 173–184, DOI: 10.1016/j.bej.2009.12.009.

    Article  Google Scholar 

  • Wanner, O., Eberl, H., Morgenroth, E., Noguera, D., Picioreanu, C., Rittmann, B., and van Loosdrecht, M. (2006). Mathematical modeling of biofilm, IWA publishing, London, pp. 59–68.

    Google Scholar 

  • Xavier, J. B., De Kreuk, M. K., and van Loosdrecht, M. C. M. (2007). “Multi-scale individual-based model of microbial and bioconversion dynamics in aerobic granular sludge.” Environ. Sci. Technol., Vol. 41, No. 18, pp. 6410–6417, DOI: 10.1021/es070264m.

    Article  Google Scholar 

  • Yang, S. F., Tay, J. H., and Liu, Y. (2004). “Respirometric activities of heterotrophic and nitrifying populations in aerobic granules developed at different substrate N/COD ratios.” Curr. Microbiol., Vol. 49, No. 1, pp. 42–96, DOI: 10.1007/s00284-004-4266-y.

    Article  Google Scholar 

  • Yang, S. F., Tay, J. H., and Liu, Y. (2005). “Effect of substrate nitrogen/chemical oxygen demand ratio on the formation of aerobic granules.” J. Environ. Eng., Vol. 131, No. 1, pp. 86–92, DOI: 10.1061/(ASCE) 0733-9372(2005)131:1(86).

    Article  Google Scholar 

  • Zhou, M., Gong, J. Y., Yang, C. Z., and Pu, W. H. (2013). “Simulation of the performance of aerobic granular sludge SBR using modified ASM3 model.” Bioresour. Technol., Vol. 127, pp. 473–481, DOI: 10.1016/j.biortech.2012.09.076.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenghao Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Cui, F. Use of Nonsteady-state Biofilm Model to characterize heterotrophic and autotrophic biomass within aerobic granules. KSCE J Civ Eng 21, 2584–2589 (2017). https://doi.org/10.1007/s12205-017-1245-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-1245-y

Keywords

Navigation