Skip to main content
Log in

Effect of harvesting age and performance evaluation on biogasification from Napier grass in separated stages process

  • Environmental Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Napier grass is a potent source of biomass commonly grown throughout the tropics. Here the effects of harvesting age and performance evaluation on Napier grass biogasification were investigated. Three different harvesting ages of fresh Pakchong-1 Napier grass at 35, 45, and 55 days were digested. Two separated stages process, combining Completely Stirred Tank Reactor (CSTR) and Anaerobic Baffle Reactor (ABR), was then operated for acidification and methanation. The results depicted that the different grass harvesting ages promoted different characteristics of biomass feedstock in particular for total solid, lignin content, and C/N ratio. The different gases production potentials about 70.8–164.6 ml biogas/g VSadded and 32.9–84.5 ml CH4/g VSadded were then promoted. The acidification of 45 days harvesting age at 1.5–3.0% (VS) in CSTR generated the different acid production for 5.9–7.5 g/l. The selected solid load of 2.0% VS generated about 21.1 g CODtotal/l or 7.5 g TVA/g VSadded. This was solubilized for almost 50% and consisted of acetic acid for 77.2–82.2%. The gases production from this hydrolysate in ABR was stably operated and produced about 484.0 and 267.8 ml /g CODremoved for biogas and methane, respectively. This result depicted the possibility of biogas production from Pakchong-1 Napier grass employing two separated stages process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aganga, A. A., Ophelia, U. J., Thema, T., and Baitshotlhi, J. C. (2005). “Chemical composition of Napier grass (Pennisetum purpureum) at different stages of growth and Napier grass silages with additives.” Journal of Biological Science, Vol. 5 No. 4, pp. 493–496, DOI: 10.3923/ jbs.2005.493.496.

    Article  Google Scholar 

  • Amon, T., Amon, B., Kryvoruchko, V., Machmuller, A., Hopfner-Sixt, K., Bodiroza, V., and Wagentristl, H. (2007). “Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations.” Bioresource technology, Vol. 98, No. 17, pp. 3204–3212, DOI: 10.1016/j.biortech.2006.07.007.

    Article  Google Scholar 

  • Anderson, G. K. and Yang, G. (1992). “Determination of bicarbonate and total volatile acid concentration in anaerobic digester using a simple titration.” Water Environmental Research, Vol. 64, No. 1, pp. 53–59, DOI: 10.2175/WER.64.1.8.

    Article  Google Scholar 

  • APHA, AWWA, WEF (1998). Standard Methods for Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Asam, Z., Paulsen, S., Nizami, A., Rafique, R., and Kiely, G. (2011). “How can we improve biomethane production per unit of feedstock in biogas plant?.” Apply Energy, Vol. 88, No. 6, pp. 2013–2018, DOI: 10.1016/j.apenergy.2010.12.036.

    Article  Google Scholar 

  • DEDE (2012). The Renewable and Alternative Energy Development Plan: for 25 percent in 10 years, Department of Alternative Energy Promotion and Efficiency. Bangkok. Thailand.

    Google Scholar 

  • Janejadkarn, A. and Chavalparit, O. (2014). “Biogas production from Napier grass (Pennisetum purpureum × Pennisetum americanum).” Advanced Materials Research, Vol. 856, pp. 327–332, DOI: 10.4028 www.scientific.net/amr.856.32.

    Article  Google Scholar 

  • Letomaki, A., Huttunen, S., Lehtinen, T. M., and Rintala, T. A. (2008). “Anaerobic digestion of grass silage in leach bed process for methane production.” Bioresource Technology, Vol. 99, No. 8, pp. 3267–3278, DOI: 10.1016/j.biortech.2007.04.072.

    Article  Google Scholar 

  • Masse, M., Gilbert, Y., Savoie, P., Belanger, G., Parent, G., and Babineau, D. (2010). “Methane yield from switchgrass harvested at different stages of development in Eastern Canada,” Bioresource Technology. Vol. 101, No. 24, pp. 9536–9541, DOI: 10.1016/j.biortech.2010.07.018.

    Article  Google Scholar 

  • McEniry, J. and O’Kiely, P. (2013). “Anaerobic methane production from five common grassland species at sequential stages of maturity.” Bioresource Technology, Vol. 127, No. 1, pp. 43–150, DOI: 10.1016/ j.biortech.2012.09.084.

    Google Scholar 

  • Murphy, J. and Power, N. (2009). “Technical and economic analysis of biogas production in Ireland utilizing three different crop rotations.” Applied Energy, Vol. 86, No. 1, pp. 25–36, DOI: 10.1016/j.apenergy. 2008.03.015.

    Article  Google Scholar 

  • Nizami, A. S. and Murphy, J. D. (2010). “What type of digester configuration should be employed to produce biomethane from grass?.” Renewable and Sustainable Energy Reviews, Vol. 14, No. 6, pp. 1558–1568, DOI: 10.1016/j.rser.2010.02.006.

    Article  Google Scholar 

  • Nizami, A. S., Orozeo, A., Groom, E., Dieterich, B., and Murphy, J. D. (2012). “How much gas can we get from grass?.” Apply Energy, Vol. 92, April, pp. 783–790, DOI: 10.1016/j.apenergy.2011.08.033.

    Article  Google Scholar 

  • Prochnow, A., Heiermann, M., Plochl, M., Linke, B., Idler, C., Amon, T., and Hobbs, P. J. (2009). “Bioenergy from permanent grassland-a review: 1. Biogas.” Bioresource Technology, Vol. 100, No. 21, pp. 4931–4944, DOI: 10.1016/j.biortech.2009.50.070.

    Article  Google Scholar 

  • Raposo, F., De la Rubia, M., Fernandez-Cegri, V., and Borja, R. (2012). “Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures.” Renewable and Sustainable Energy Reviews, Vol. 16, No. 1, pp. 861–877, DOI: 10.1016/j.rser.2011.09.008.

    Article  Google Scholar 

  • Rengsirikul, K., Ishii, Y., Kangvansaichol, K., Sripichitt, P., Pensive, V., Vaithanomsat, P., Nakamanee, G., and Tudsri, S. (2013). “Biomass yield, chemical composition and potential ethanol yields of 8 cultivars of Napier grass (Pennisetum purpureum Schumach.) harvested 3-monthly in central Thailand.” Journal of Sustainable Bioenergy System, Vol. 3, No. 3, pp. 107–112, DOI: 10.4236/jsbs.2013.32015.

    Article  Google Scholar 

  • Saitawee, L., Hussaro, K., Teekasap, S., and Cheamsawat, N. (2014). “Biogas production from anaerobic co-digestion of cow dung and organic waste (Napier Pakchong 1 and food waste) in Thailand: effect of temperature on biogas product.” American Journal of Environmental Science, Vol. 10, No. 2, pp. 129–139, DOI: 10.3844/ ajessp. 2014.129.139.

    Article  Google Scholar 

  • Sawatdeenarunat, C., Surendra, K. C., Takara, D., Oechsner, H., and Khanal, S. K. (2015). “Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities,” Bioresource Technology, Vol. 178, February, pp. 178–186, DOI: 10.1016/j.biortech.2014.09.103.

    Article  Google Scholar 

  • Smolders, G. J. F., Van der Meij, J., Van Loosdrecht, M. C. M., and Heijnen, P. (1994). “Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence.” Biotechnology and Bioengineering, Vol. 43, No. 6, pp. 461–470, DOI: 10.1002/bit.260430605.

    Article  Google Scholar 

  • Surendra, K. C. and Khanal, S. K. (2015). “Effects of crop maturity and size reduction on digestibility and methane yield of dedicated energy crop.” Bioresource Technology, Vol. 178, February, pp. 187–193, DOI: 10.1016/j.biortech.2014.09.055.

    Article  Google Scholar 

  • Takara, D. and Khanal, S. K. (2015). “Characterizing compositional changes of Napier grass at different stages of growth for biofuel and biobased products potential.” Bioresource Technology, Vol. 188, July, pp. 103–108, DOI: 10.1016/j.biortech.2015.01.114.

    Article  Google Scholar 

  • Van Soest, P. J. and Wine, R. H. (1967). “Use of detergents in the analysis of fibrous feeds: IV Determination of plant cell-wall constituents.” Journal of Associate Official Analytical Chemistry, Vol. 50, No. 1, pp. 50–59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Chavalparit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanpla, M., Kullavanijaya, P., Janejadkarn, A. et al. Effect of harvesting age and performance evaluation on biogasification from Napier grass in separated stages process. KSCE J Civ Eng 22, 40–45 (2018). https://doi.org/10.1007/s12205-017-1164-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-1164-y

Keywords

Navigation