Advertisement

KSCE Journal of Civil Engineering

, Volume 21, Issue 6, pp 2476–2487 | Cite as

Finite element model methodology for asphalt-coated anchor used in underground main powerhouse anchored-on-rock crane girder

  • Dongdong Li
  • Ming XiaoEmail author
  • Juntao Chen
  • Jian Zhao
Tunnel Engineering
  • 113 Downloads

Abstract

Uncoated or grout-coated rock anchoring systems are used in underground engineering to increase the carrying capacity of surrounding rock. 3D modeling has been used to simulate grout-coated anchor characteristics, but for less common coatings, e.g., asphalt, existing Finite Element (FE) models contain too many nodes and elements to be computationally efficient. Using AutoCAD and OpenGL visual FE modeling, a methodology is proposed for asphalt element generation in FE models; FORTRAN is used to rewrite the model file information and reduce the number of model elements and nodes while boosting modeling and computational efficiency. Implicit lever and column elements are introduced to simulate anchors with and without asphalt coatings, respectively, and appropriate stiffness matrices and iterative FE calculation formulas are derived. The resulting FE model is used to simulate the anchoring system. Results show that the asphalt coating technique reduces the surrounding rock wall’s damage zone and increases anchor stresses inside deep rock masses. This can improve the rock mass mechanical characteristics near the anchors and increase the stabilities of the surrounding rock and the safety crane girder. The proposed calculation and grid re-meshing method shows good adaptability and practicality, and can serve as a reference for similar FE analysis processes.

Keywords

finite element anchor asphalt anchored-on-rock crane girder grid meshing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bera, A. K. (2014). “Parametric study on uplift capacity of anchor with tie in sand.” KSCE Journal of Civil Engineering, Vol. 18, No. 4, pp. 1028–1035, DOI: 10.1007/s12205–014–0114–1.CrossRefGoogle Scholar
  2. Cai, Y., Jiang, Y. J., Djamaluddin, I., Iura T., and Esaki, T. (2015). “An analytical model considering interaction behavior of grouted rock bolts for convergence–confinement method in tunneling design.” International Journal of Rock Mechanics and Mining Sciences, Vol. 76, pp. 112–126, DOI: 10.1016/j.ijrmms.2015.03.006.CrossRefGoogle Scholar
  3. Chen, J. T., Xiao, M., and Zheng, Y. L. (2006). “Development of 3D graphics system of finite elements for underground engineering using OpenGL.” Chinese Journal of Rock Mechanics and Engineering, Vol. 25, No. 5, pp. 1015–1020, DOI: 1000-6915(2006)05-1015-06.Google Scholar
  4. Dong, J. H., Zhu, Y. P., Zhou, Y., and Ma, W. (2010). “Dynamic calculation model and seismic response for frame supporting structure with prestressed anchors.” Science China Technological Sciences, Vol. 53, No. 7, pp. 1957–1966, DOI: 10.1007/S11431-010-3241-Z.CrossRefzbMATHGoogle Scholar
  5. Ghadimi, M., Shahriar, K., and Jalalifar, H. (2015). “A new analytical solution for the displacement of fully grouted rock bolt in rock joints and experimental and numerical verifications.” Tunnelling and Underground Space Technology, Vol. 50, pp. 143–151, DOI: 10.1016/j.tust.2015.07.014.CrossRefGoogle Scholar
  6. Harris, N. J., Benzley, S. E., and Owen, S. J. (2004). “Conformal refinement of all-hexahedral element meshes based on multiple twist plane insertion.” Proc., 13th International Meshing Roundtable, Williamsburg, pp. 157–168.Google Scholar
  7. He, L., An, X.M. and Zhao, Z.Y. (2015). “Fully Grouted Rock Bolts: An Analytical Investigation.” Rock Mechanics and Rock Engineering, Vol. 48, No. 3, pp. 1181–1196, DOI: 10.1007/s00603–014–0610–0.CrossRefGoogle Scholar
  8. Huang, X.M. and Wang, S.J. (2013). Analysis theory and practice of modern asphalt pavement structure, Science Press, Beijing, China.Google Scholar
  9. Kang, H., Wu, Y., Gao, F., Jiang, P., Cheng, P., Meng, X., and Li, Z. (2016). “Mechanical performances and stress states of rock bolts under varying loading conditions.” Tunnelling and Underground Space Technology, Vol. 52, pp. 138–146, DOI: 10.1016/j.tust.2015.12.005.CrossRefGoogle Scholar
  10. Lee, C. M. and Yang, D. Y. (2000). “A three-dimensional steady-state finite element analysis of square die extrusion by using automatic mesh generation.” International Journal of Machine Tools & Manufacture, Vol. 40, No. 1, pp. 33–47, DOI: 10.1016/S0890-6955(99)00048-6.MathSciNetCrossRefGoogle Scholar
  11. Liu, H. B., Chen, J. T., and Xiao, M. (2008). “Program development of rapid modeling for initial stress field back calculation based on CAD relief map.” Rock and Soil Mechanics, Vol. 29, supp., pp. 297–302, DOI: 1000-7598-(2008)s-297-06.Google Scholar
  12. Shan, R. L., Zhou, J. J., and Xia, Y. (2011). “Experimental investigation on dynamic response of rock anchor under blasting load.” Chinese Journal of Rock Mechanics and Engineering, Vol. 30, No. 8, pp. 1540–1546, DOI: 1000-6915(2011)08-1540-07.Google Scholar
  13. Sun, H. Y., Wong, L. N. Y., Shang, Y. Q., Lu, Q., and Zhan, W. (2010). “Systematic monitoring of the performance of anchor systems in fractured rock masses.” International Journal of Rock Mechanics & Mining Sciences, Vol. 47, pp. 1038–1045, DOI: 10.1016/j.ijrmms.2010.05.012.CrossRefGoogle Scholar
  14. Villaescusa, E., Varden, R., and Hassell, R. (2008). “Quantifying the performance of resin anchored rock bolts in the Australian underground hard rock mining industry,” International Journal of Rock Mechanics and Mining Sciences, Vol. 45, No. 1, pp. 94–102, DOI: 10.1016/j.ijrmms.2007.03.004.CrossRefGoogle Scholar
  15. Wen, J. Z., Zhang, Y. X., and Wang, C. (2013). “Study of mechanical model of fully grouted rock anchor’s anchorage interface in tunnel surrounding rock.” Rock and Soil Mechanics, Vol. 34, No. 6, pp. 1645–1651, DOI: 1000-7598-(2013)06-1645-08.Google Scholar
  16. Xiao, M. (2002). Study in numerical analysis method of stability and supporting for underground caverns, Ph.D. Thesis, Wuhan University, Wuhan, China.Google Scholar
  17. Ye, H. L., Zheng, Y. R., and Lu, X. (2011). “Shaking table test on anchor bars of slope under earthquake.” China Civil Engineering Journal, Vol. 44, supp., pp. 152–157, DOI: 10.15951/j.tmgcxb.2011.s1.004.Google Scholar
  18. Zhang, X.N. (2006). Viscoelastic mechanics and its application of asphalt and asphalt mixture, China Communications Press, Beijing, China.Google Scholar
  19. Zhang, Y. T., Xiao, M., and Chen, J. T. (2010). “A new methodology for block identification and its application in a large scale underground cavern complex.” Tunnelling & Underground Space Technology, Vol. 25, No. 2, pp. 168–180, DOI: 10.1016/j.tust.2009.10.005.CrossRefGoogle Scholar
  20. Zhang, Y. T., Xiao, M., and Zuo, S. Y. (2009). “Methodology for modeling of complex geological faults in geotechnical engineering based on element reconstruction.” Chinese Journal of Rock Mechanics and Engineering, Vol. 28, No. 9, pp. 1848–1855, DOI: 1000-6915 (2009)09-1848-08.Google Scholar
  21. Zheng, X. G., Hua, J. B., Zhang, N., Feng, X. W., and Zhang, L. (2015). “Simulation of the load evolution of an anchoring system under a blasting impulse load using FLAC3D.” Shock and Vibration, Vol. 2015, pp. 1–8, DOI: 10.1155/2015/972720.Google Scholar
  22. Zheng, Y. L. and Xiao, M. (2004). “Realization of 3D FEM mesh subdivision for of complicated underground cavity group in CAD.” Chinese Journal of Rock Mechanics and Engineering, Vol. 23, No. supp. 2, pp. 4988–4992, DOI: 1000-6915(2004)s2-4988-05.Google Scholar
  23. Zhou, H., Xu, R. C., Zhang, C. Q., Lu, J. J., Meng, F. Z., and Shen, Z. (2015). “Research on effect of interior bonding section length of prestressed anchor rod.” Rock and Mechanics, Vol. 36, No. 9, pp. 2688–2694, DOI: 10.16285/j.rsm.2015.09.032.Google Scholar
  24. Zsaki, A. M. (2010). “Optimized mesh generation for two-dimensional finite element analysis of underground excavations in rocks masses traversed by joints.” International Journal of Rock Mechanics and Mining Sciences, Vol. 47, No. 4, pp. 553–558, DOI: 10.1016/j.ijrmms.2010.03.005.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Dongdong Li
    • 1
  • Ming Xiao
    • 1
    Email author
  • Juntao Chen
    • 1
  • Jian Zhao
    • 1
  1. 1.State Key Laboratory of Water Resources and Hydropower Engineering ScienceWuhan UniversityWuhan CityChina

Personalised recommendations