Skip to main content
Log in

Centrifuge Modelling and Analysis of Ground Reaction of High-speed Railway Embankments over Medium Compressibility Ground

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The objective of this study is to verify the feasibility of using centrifugal model tests to characterize the ground reaction response of a high-speed railway embankment to predict its ground settlement. To do so, a series of Centrifugal Model Tests (CMTs) of the embankment were performed to investigate the variation of ground reaction and corresponding derived modulus at different embankment ratios. The ground reaction determined from the CMTs was compared with those obtained from corresponding full-scale field tests of instrumented embankment. The results show that the ground reaction at the embankment centreline gradually approaches the embankment weight (γH) with increasing embankment ratio. Considering the embankment filling process with different embankment ratios, it seems inappropriate to employ the value of γH as the ground reaction without any correction in settlement prediction. Finally, the predictive capability of the proposed approach for embankment settlement estimation was assessed against the corresponding field measurements and those determined based on the calculation methods suggested in the current design standard in China. The results show that the proposed simple approach satisfactorily estimates the ground settlement of HSR embankments and its deviation of predicted settlements is below 11.9% compared with the data obtained from the field full-scale tests. However, the deviation of the result calculated by the current recommend design standard is 17.7%-148.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ariyarathne, P. and Liyanapathirana, D. S. (2015). “Review of existing design methods for geosynthetic-reinforced pile-supported embankments.” Soils and Foundations, vol. 55, no. 1, pp. 17–34. DOI: 10.1016/j.sandf.2014.12.002.

    Article  Google Scholar 

  • ASTM, D. (2006). Standard practice for classification of soils for engineering purposes (unified soil classification system), ASTM International, West Conshohocken, PA, USA.

    Google Scholar 

  • Borges, J. L. and Marques, D. O. (2011). “Geosynthetic-reinforced and jet grout column-supported embankments on soft soils: Numerical analysis and parametric study.” Computers and Geotechnics, vol. 38, no. 7, pp. 883–896. DOI: 10.1016/j.compgeo.2011.06.003.

    Article  Google Scholar 

  • Boussinesq, J. (1885). Application des potentiels a l’équilibre et du mouvement des solides élastiques, Gauthier-Villars.

    MATH  Google Scholar 

  • Bowles, J. E. (1996). “Foundation analysis and design.” 6th Ed., McGrow-Hill International Press, https://doi.org/10.1.1.57:8080/dspace/handle/hau/4588.

    Google Scholar 

  • Chen, J. F., Li, L. Y., Xue, J. F., and Feng, S. Z. (2015). “Failure mechanism of geosynthetic-encased stone columns in soft soils under embankment.” Geotextiles and Geomembranes, vol. 43, no. 5, pp. 424–431. DOI: 10.1016/j.geotexmem.2015.04.016.

    Article  Google Scholar 

  • China Railway Eryuan Engineering Group CO. LTD (CREEGC) and Southwest Jiaotong University (SWJTU). (2010). Settlement characteristics and treatment technology of medium compressibility soil ground report, Chengdu, China.

    Google Scholar 

  • Christensen, S. N. and Bagge, G. (1977). “Centrifugal testing on the bearing capacity of circular footings on the surface of sand.” Dialog, 20th anniversary of the Danish Engineering Academy, Copenhagen.

    Google Scholar 

  • Deb, K., Basudhar, P. K., and Chandra, S. (2007). “Generalized model for geosynthetic-reinforced granular fill-soft soil with stone columns.” International Journal of Geomechanics, vol. 7, no. 4, pp. 266–276. DOI: 10.1061/(ASCE)1532-3641(2007)7:4(266).

    Article  Google Scholar 

  • Deb, K. and Mohapatra, S. R. (2013). “Analysis of stone column-supported geosynthetic-reinforced embankments.” Applied Mathematical Modelling, vol. 37, no. 5, pp. 2943–2960. DOI: 10.1016/j.apm. 2012.07.002.

    Article  MathSciNet  MATH  Google Scholar 

  • Dinçer, ̐. (2011). “Models to predict the deformation modulus and the coefficient of embankment reaction for earth filling structures.” Advances in Engineering Software, vol. 42, no. 4, pp. 160–171. DOI: 10.1016/j.advengsoft.2011.02.001.

    Article  MATH  Google Scholar 

  • Dutta, S. C. and Roy, R. (2002). “A critical review on idealization and modeling for interaction among soil-foundation-structure system.” Computers & Structures, vol. 80, no. 20, pp. 1579–1594. DOI: 10.1016/S0045-7949(02)00115-3.

    Article  Google Scholar 

  • Elachachi, S. M., Breysse, D., and Houy, L. (2004). “Longitudinal variability of soils and structural response of sewer networks.” Computers and Geotechnics, vol. 31, no. 8, pp. 625–641. DOI: 10.1016/j.compgeo. 2004.10.003.

    Article  Google Scholar 

  • Garnier, J. (2002). “Properties of soil samples used in centrifuge models.” In Physical Modelling in Geotechnics: Proceedings of the International Conference, St John’s, Canada, Balkema, Rotterdam, the Netherlands, pp. 5–19.

    Google Scholar 

  • Garnier, J., Gaudin, C., Springman, S. M., Culligan, P. J., Goodings, D., Konig, D., and Thorel, L. (2007). “Catalogue of scaling laws and similitude questions in geotechnical centrifuge modeling.” International Journal of Physical Modelling in Geotechnics, vol. 7, no. 3, pp. 1, DOI: 10.1680/ijpmg.2007.070301.

    Article  Google Scholar 

  • GB5007-2002 (2002). Code for design of building foundation, ministry of housing and urban-rural development of the People’s Republic of China, China Architecture & Building Press, Beijing, China.

    Google Scholar 

  • Goodings, D. J. and Gillette, D. R. (1996). “Model size effects in centrifuge models of granular slope instability.” Geotechnical Testing Journal, vol. 19, no. 3, pp. 277–285. DOI: 10.1520/GTJ10353J.

    Article  Google Scholar 

  • Han, J., Bhandari, A., and Wang, F. (2011). “DEM analysis of stresses and deformations of geogrid-reinforced embankments over piles.” International Journal of Geomechanics, vol. 12, no. 4, pp. 340–350. DOI: 10.1061/(ASCE)GM.1943-5622.0000050.

    Article  Google Scholar 

  • Hasebe, N. and Wang, X. F. (2003). “Irregular elastic half-plane gravity problem.” International Journal of Rock Mechanics and Mining Sciences, vol. 40, no. 6, pp. 863–875. DOI: 10.1016/S1365-1609 (03)00054-6.

    Article  Google Scholar 

  • Jiang, Y., Han, J., and Zheng, G. (2014). “Numerical analysis of a pile–slab-supported railway embankment.” Acta Geotechnica, vol. 9, no. 3, pp. 499–511. DOI: 10.1007/s11440-013-0285-9.

    Article  Google Scholar 

  • Kim, T. H., Kim, T. H., and Kang, G. C. (2013). “Performance evaluation of road embankment constructed using lightweight soils on an unimproved soft soil layer.” Engineering Geology, vol. 160, pp. 34–43. DOI: 10.1016/j.enggeo.2013.03.024.

    Article  Google Scholar 

  • Kutter, B. L., O’Leary, L. M., Thompson, P. Y., and Lather, R. (1988). “Gravity-scaled tests on blast-induced soil-structure interaction”. Journal of Geotechnical Engineering, vol. 114, no. 4, pp. 431–447. DOI: 10.1061/(ASCE)0733-9410(1988)114:4(431).

    Article  Google Scholar 

  • Lee, J. and Jeong, S. (2016). “Experimental study of estimating the embankment reaction modulus on jointed rock foundations.” Rock Mechanics and Rock Engineering, vol. 49, no. 6, pp. 2055–2064. DOI: 10.1007/s00603-015-0905-9.

    Article  Google Scholar 

  • Malushitsky, Y. N. (1981). The centrifugal model testing of waste-heap embankments, Cambridge University Press, United Kingdom, https://doi.org/infoscience.epfl.ch/record/27320.

    Google Scholar 

  • Ovesen, N. K. (1979). “The scaling law relationship-Panel discussion.” In Proc. 7th European Conference on Soil Mechanics and Foundation Engineering, 1979, vol. 4, pp. 319–323, https://doi.org/ci.nii.ac.jp/naid/10012032611.

    Google Scholar 

  • Perloff, W. H., Baladi, G. Y., and Harr, M. E. (1967). “Stress distribution within and under long elastic embankments.” Highway Research Record, No. FHWA/IN/JHRP-67/14, pp. 181, DOI: 10.5703/1288284313715.

    Google Scholar 

  • Santamarina, J. C. and Goodings, D. J. (1989). “Centrifuge modeling: A study of similarity.” Geotechnical Testing Journal, vol. 12, no. 2, pp. 163–166. DOI: 10.1520/GTJ10692J.

    Article  Google Scholar 

  • Sharma, J. S. and Bolton, M. D. (2001). “Centrifugal and numerical modelling of reinforced embankments on soft clay installed with wick drains.” Geotextiles and Geomembranes, vol. 19, no. 1, pp. 23–44. DOI: 10.1016/S0266-1144(00)00009-1.

    Article  Google Scholar 

  • Tatsuoka, F. and Haibara, O. (1985). “Shear resistance between sand and smooth or lubricated surfaces.” Soils and Foundations, vol. 25, no. 1, pp. 89–98. DOI: 10.3208/sandf1972.25.89.

    Article  Google Scholar 

  • Taylor, R. E. (2014). Geotechnical centrifuge technology.

    Book  Google Scholar 

  • CRC Press. TB10621-2009 (2009). Code for design of high speed railway. The Ministry of Railways of the People’s Republic of China, Beijing, China.

    Google Scholar 

  • Terzaghi, K. V. (1955). “Evaluation of coefficient of embankment reaction.” Geotechnique, vol. 5, no. 4, pp. 297–326, https://doi.org/citeseerx.ist.psu.edu/showciting?cid=1257192.

    Article  Google Scholar 

  • Thorel, L., Ferber, V., Caicedo, B., and Khokhar, I. M. (2011). “Physical modelling of wetting-induced collapse in embankment base.” Géotechnique, vol. 61, no. 5, pp. 409–420. DOI: 10.1680/geot.10.P.029.

    Article  Google Scholar 

  • Tsuchida, T. and Kikuchi, Y. (1991). “K0 consolidation of undisturbed clays by means of triaxial cell.” Soils and foundations, vol. 31, no. 3, pp. 127–137. DOI: 10.3208/sandf1972.31.3_127.

    Article  Google Scholar 

  • Wang, C., Wang, B., Guo, P., and Zhou, S. (2015). “Experimental analysis on settlement controlling of geogrid-reinforced pile-raft-supported embankments in high-speed railway.” Acta Geotechnica, vol. 10, no. 2, pp. 231–242. DOI: 10.1007/s11440-013-0288-6.

    Article  Google Scholar 

  • Winkler, E. (1867). Die lehre von der elastizität und festigkeit (The Theory of elasticity and stiffness). H. Dominicus Prague, Czechoslovakia.

    Google Scholar 

  • Winterkorn, H. F. and Fang, H. Y. (1991). Soil Technology and Engineering properties of soils, In: Fang HY. (eds.) Foundation Engineering Handbook. Springer, Boston, MA, DOI: 10.1007/978-1-4615-3928-5_3.

    Book  Google Scholar 

  • Yao, Y. C., Li, A. H., and Jiang, G. L. (2013). “Testing study on the settlement characteristics of completely weathered granite foundation of hainan eastern ring railway.” High Speed Railway Technology, vol. 4, no. 1, pp. 8–13, https://doi.org/en.cnki.com.cn/Article_en/CJFDTOTALGSTL201301004.htm.

    Google Scholar 

  • Ye, G., Zhang, Q., Zhang, Z., and Chang, H. (2015). “Centrifugal modeling of a composite foundation combined with soil–cement columns and prefabricated vertical drains”Soils and Foundations, vol. 55, no. 5, pp. 1259–1269. DOI: 10.1016/j.sandf.2015.09.024.

    Article  Google Scholar 

  • Zhang, C. L., Jiang, G. L., Liu, X. F., and Buzzi, O. (2016). “Arching in geogrid-reinforced pile-supported embankments over silty clay of medium compressibility: Field data and analytical solution.” Computers and Geotechnics, vol. 77, pp. 11–25. DOI: 10.1016/j.compgeo.2016. 03.007.

    Article  Google Scholar 

  • Zhang, C. L., Jiang, G. L., Liu, X. F., and Wang, Z. M. (2015). “Deformation performance of cement-fly ash-gravel pile-supported embankments over silty clay of medium compressibility: A case study.” Arabian Journal of Geosciences, vol. 8, no. 7, pp. 4495–4507. DOI: 10.1007/s12517-014-1559-8.

    Article  Google Scholar 

  • Zhang, C. L., Jiang, G. L., Wu, L. J., and Li, A. H. (2012). “Investigation on unsaturated soil of medium-compression settlement prediction.” Hydrogeology & Engineering Geology, vol. 39, no. 6, pp. 50–56. DOI: 10.16030/j.cnki.issn.1000-3665.2012.06.008.

    Google Scholar 

  • Zheng, G., Jiang, Y., Han, J., and Liu, Y. F. (2011). “Performance of cement-fly ash-gravel pile-supported high-speed railway embankments over soft marine clay.” Marine Georesources and Geotechnology, vol. 29, no. 2, pp. 145–161. DOI: 10.1080/1064119X.2010.532700.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-jun Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Cl., Jiang, Gl., Liu, Xf. et al. Centrifuge Modelling and Analysis of Ground Reaction of High-speed Railway Embankments over Medium Compressibility Ground. KSCE J Civ Eng 22, 4826–4840 (2018). https://doi.org/10.1007/s12205-017-0510-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-0510-4

Keywords

Navigation