Skip to main content
Log in

Spatial Distribution of Gusty Loads on a Rectangular Prism in Boundary Layer Flows

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The pressure fluctuations acting on a stationary rectangular prism with cross configuration (2:1/1:2) are investigated by wind tunnel testing. The synchronous surface pressures on the rigid model were measured in simulated atmospheric boundary layer flow and the unsteady forces were calculated by numerical integral of surface pressures. The effects of the wind fields and the model’s side ratio on the aerodynamic coefficients, spectral characteristics and spatial correlation of aerodynamic loading were investigated. The main purpose of this study is to further analyze the spatial structure of the fluctuating wind loads acting on a rectangular prism as well as to use the cross correlation coefficient and coherence function to explore their distribution trends. The results show that the along-wind gust loading is consistent with the longitudinal turbulence and the across-wind aerodynamic force is mainly induced by the vortex-shedding, recirculation and reattachment of separation shear layers on the lateral sides. In practical applications, the Strouhal number is approximately constant along the height. Extended empirical coherence models of the fluctuating along-wind and across-wind loads are proposed with consideration to the effects of wind fields, the structure characteristics and dimensions of the prism and length scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Architectural Industry Press of China (2012). Load code for the design of building structure, (GB 50009-2012), Beijing.

  • Bearman, P. W. and Morel, T. (1983). “Effect of free stream turbulence on the flow around bluff bodies,” Prog. Aerosp. Sci., Vol. 20, No. 2, pp. 97–123, DOI: 10.1016/0376-0421(83)90002-7.

    Article  Google Scholar 

  • Cao, S. Y., Zhou, Q., and Zhou, Z. Y. (2014). “Velocity shear flow over rectangular cylinders with different side ratio,” Comp. Fluid., Vol. 96, pp. 35–46, DOI: 10.1016/j.compfluid.2014.03.002.

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng, C. M., Lu, P. C., and Chen, R. H. (1992). “Wind loads on square cylinder in homogeneous turbulent flows,” J. Wind Eng. Ind. Aerodrn., Vol. 41, No. 1, pp. 739–749, DOI: 10.1016/0167-6105(92)90490-2.

    Article  Google Scholar 

  • Chen, X. and Kareem, A. (2004). “Equivalent static wind loads on buildings: New model,” J. Struct. Eng., ASCE, Vol. 130, No. 10, pp. 1425–1435, DOI: 10.1061/(ASCE)0733-9445(2004)130:10(1425).

    Article  Google Scholar 

  • Chio, H. and Kanda, J. (1993). “Proposed formulae for the power spectral densities of fluctuating lift and torque on rectangular 3-D cylinders,” J. Wind Eng. Ind. Aerodrn., Vol. 46, pp. 507–516, DOI: 10.1016/0167-6105(93)90318-I.

    Article  Google Scholar 

  • Davenport, A. G. (1967). “Gust loading factors,” J. Struct. Div., ASCE, Vol. 93, No. 3, pp. 11–34.

    Google Scholar 

  • Dyrbye, C. and Hansen, S. O. (1996). Wind Loads on Structures, John Wiley & Sons, New York, NY, USA.

    Google Scholar 

  • Gu, M. and Quan, Y. (2011). “Across-wind loads and effects of supertall buildings and structures,” Sci. China Tech. Sci., Vol. 54, No. 10, pp. 2531–2541, DOI: 10.1007/s11431-011-4543-5.

    Article  MATH  Google Scholar 

  • Huang, J. and Gu, M. (2014). “Experimental investigation of blockage effects on fluctuating wind forces on rectangular tall buildings in uniform flow,” J. Build Struct., Vol. 35, No. 10, pp. 122–129, DOI: 10.13465/j.cnki.jvs.2014.12.005.

    Google Scholar 

  • Huang, G. Q. and Chen, X. Z. (2007). “Wind load effects and equivalent static wind loads of tall buildings based on synchronous pressure measurements,” Eng. Struct., Vol. 29, pp. 2641–2653, DOI: 10.1016/j.engstruct.2007.01.011.

    Article  Google Scholar 

  • Huot, J. P., Rey, C., and Arbey, H. (1986). “Experimental analysis of the pressure field induced on a square cylinder by a turbulent flow,” J. Fluid Mech., Vol. 162, pp. 283–298, DOI: 10.1017/S0022112086002057.

    Article  Google Scholar 

  • Isyumov, N. and Poole, M. (1983). “Wind induced torque on square and rectangular building shapes,” J. Wind Eng. Ind. Aerodrn., Vol. 13, pp. 183–196, DOI: 10.1016/0167-6105(83)90140-X.

    Article  Google Scholar 

  • Isyumov, N. and Case, P. C. (2000). “Wind-induced torsional loads of responses of buildings.” Adv. Tech. Struct. Eng., pp. 1–8, DOI: 10.1061/40492(2000)83.

    Google Scholar 

  • Jakobsen, J. B. (1997). “Span-wise structure of lift and overturning moment on a motionless bridge girde,” J. Wind Eng. Ind. Aerodrn., Vol. 69, pp. 795–805, DOI: 10.1016/S0167-6105(97)00206-7.

    Article  Google Scholar 

  • Kareem, A. and Cermak, J. E. (1984a). “Pressure fluctuations on a square building model in boundary-layer flows,” J. Wind Eng. Ind. Aerodrn., Vol. 16, No. 1, pp. 17–41, DOI: 10.1016/0167-6105(84)90047-3.

    Article  Google Scholar 

  • Kareem, A. (1984b). “Model for predicting the acrosswind response of buildings,” Eng. Struct., Vol. 6, No. 2, pp. 136–141, DOI: 10.1016/0141-0296(84)90006-3.

    Article  MathSciNet  Google Scholar 

  • Kareem, A. and Zhou, Y. (2003). “Gust loading factor—past, present and future,” J. Wind Eng. Ind. Aerodrn., Vol. 91, No. 12, pp. 1301–1328, DOI: 10.1016/j.jweia.2003.09.003.

    Article  Google Scholar 

  • Krenk, S. (1996). “Wind field coherence and dynamic wind forces.” In IUTAM Symposium on Advances in Nonlinear Stochastic Mechanics, Springer, Netherlands, January.

    Google Scholar 

  • Larose, G. L. and Mann, J. (1998). “Gust loading on streamlined bridge decks,” J Fluid struct., Vol. 215, pp. 511–536, DOI: 10.1006/jfls.1998.0161.

    Article  Google Scholar 

  • Lee, B. E. (1975). “The effect of turbulence on the surface pressure field of a square prism,” J. Fluid Mech., Vol. 69, No. 2, pp. 263–282, DOI: 10.1017/S0022112075001437.

    Article  Google Scholar 

  • Liang, S., Liu, S., Li, Q., Zhang, L., and Gu, M. (2002). “Mathematical model of acrosswind dynamic loads on rectangular tall buildings,” J. Wind Eng. Ind. Aerodrn., Vol. 90, No. 12, pp. 1757–1770, DOI: 10.1016/S0167-6105(02)00285-4.

    Article  Google Scholar 

  • Liang, S., Li, Q., Liu, S., Zhang, L., and Gu M. (2004). “Torsional dynamic wind loads on rectangular tall buildings,” Eng. Struct., Vol. 26, pp. 129–137, DOI: 10.1016/j.engstruct.2003.09.004.

    Article  Google Scholar 

  • Li, S. P., Li, M. S., and Liao, H. L. (2015). “The lift on an aerofoil in grid-generated turbulence,” J. Fluid Mech., Vol. 771, pp. 16–35, DOI: 10.1017/jfm.2015.162.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, M. S., Li, S. P., Liao, H. L., Zeng, J. D., and Wang, Q. (2016). “Spanwise correlation of aerodynamic forces on oscillating rectangular cylinder,” J. Wind Eng. Ind. Aerodrn., Vol. 154, pp. 47–57, DOI: 10.1016/j.jweia. 2016.04.003.

    Article  Google Scholar 

  • Lin, N., Letchford, C., Tamura, Y., Liang, B., and Nakamura, O. (2005). “Characteristics of wind forces acting on tall buildings,” J. Wind Eng. Ind. Aerodrn., Vol. 93, pp. 217–242, DOI: 10.1016/j.jweia. 2004.12.001.

    Article  Google Scholar 

  • Nakamura, O. (1993). “Bluff-body aerodynamics and turbulence,” J. Wind Eng. Ind. Aerodrn., Vol. 49, pp. 65–78, DOI: 10.1016/0167-6105(93)90006-A.

    Article  Google Scholar 

  • Robertson, J. M., Wedding, J. B., Peterka, J. P., and Cermak, J. E. (1978). “Wall pressures of separation—reattachment flow on a square prism in uniform flow,” J. Wind Eng. Ind. Aerodrn., Vol. 2, No. 4, pp. 345–359, DOI: 10.1016/0167-6105(78)90019-3.

    Article  Google Scholar 

  • Simiu, E. and Scanlan, R. H. (1996). Wind Effects on Structures: an Introduction to Wind Engineering, (7th Edition), John Wiley, New York, NY, USA.

    Google Scholar 

  • Solari, G. (1985). “Mathematical model to predict 3-D wind loading on buildings,” J. Eng. Mech., ASCE, Vol. 111, No. 2, pp. 254–276, DOI: 10.1061/(ASCE)0733-9399(1985)111:2(254).

    Article  Google Scholar 

  • Surry, D. and Djakovich, D. (1995). “Fluctuating pressures on models of tall buildings,” J. Wind Eng. Ind. Aerodrn., Vol. 58, No. 1, pp. 81–112, DOI: 10.1016/0167-6105(95)00015-J.

    Article  Google Scholar 

  • Tamura, T. and Ono, Y. (2003). “LES analysis on aeroelastic instability of prisms in turbulent flow,” J. Wind Eng. Ind. Aerodrn., Vol. 91, No. 12, pp. 1827–1846, DOI: 10.1016/j.jweia.2003.09.032.

    Article  Google Scholar 

  • Vickery, B. J. (1966). “Fluctuating lift and drag on a long cylinder of square cross-section in a smooth and in a turbulent stream,” J. Fluid Mech., Vol. 25, No. 3, pp. 481–494, DOI: 10.1017/S002211206600020X.

    Article  Google Scholar 

  • Vickery, B. J. and Kao, K. H. (1972). “Drag or along-wind response of slender structures,” J. Struct. Div., ASCE, Vol. 98, No. 1, pp. 21–36.

    Google Scholar 

  • Vickery, B. J. and Basu, R. I. (1983). “Across-wind vibrations of structures of circular cross-section. Part I. Development of a mathematical model for two-dimensional conditions,” J. Wind Eng. Ind. Aerodrn., Vol. 12, No. 1, pp. 49–73, DOI: 10.1016/0167-6105(83)90080-6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingshui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Li, M., Li, S. et al. Spatial Distribution of Gusty Loads on a Rectangular Prism in Boundary Layer Flows. KSCE J Civ Eng 22, 3052–3065 (2018). https://doi.org/10.1007/s12205-017-0465-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-0465-5

Keywords

Navigation