Skip to main content
Log in

3D Dynamic Finite Element Analyses and 1 g Shaking Table Tests on Seismic Performance of Connected and Nonconnected Piled Raft Foundations

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Connected and disconnected piled raft foundations have been evaluated under lateral cyclic loading in this study. Connected Piled Raft (CPR) and nonconnected piled (NPR) foundations were considered and evaluated in 1-g shaking table tests. FEM numerical modelling also was employed to evaluate the results. The responses were evaluated and compared using lateral movement of caps, moments and lateral loads along the piles and ground settlements. The results indicate that both nonconnected and connected piled raft foundations effectively reduce the ground settlements, however, connected piled rafts have much higher lateral stiffness and piles contribute to lateral load bearing mechanism more effectively; in connected piled raft, piles bear higher moments and lateral loads and reduce lateral movements more effectively. The cap weight and superstructure (central mass height) effect has been considered through supplementary numerical assessments for CPR case. Superstructure addition tends to increase the pile moment and raft inclination where the frequency effect is also critically important. Also heavier cap experiences higher rotations and associated with higher induced loads to piles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Concrete Institute (ACI) (1969). “ACI standard-Building code requirements for reinforced concrete” ACI 318-19, Detroit.

    Google Scholar 

  • Amini, F. and Ghaderi, P. (2013). “Seismic motion control of structures: A developed adaptive back stepping approach.” Computers and Structures, Vols. 114-115, pp. 18–25. DOI: 10.1016/j.compstruc.2012.09.011.

    Article  Google Scholar 

  • Areias, P., Rabczuk, T., and Msekh, M. A. (2016). “Phase-field analysis of finite-strain plates and shells including element subdivision.” Computer Methods in Applied Mechanics and Engineering, Vol. 312, pp. 322–350. DOI: 10.1016/j.cma.2016.01.020.

    Article  MathSciNet  Google Scholar 

  • Areias, Pedro and Rabczuk, T. (2013). “Finite strain fracture of plates and shells with configurational forces and edge rotations.” International Journal for Numerical Methods in Engineering, Vol. 94, No. 12, pp. 1099–1122. DOI: 10.1002/nme.4477.

    Article  MathSciNet  MATH  Google Scholar 

  • Bathurst, Richard J., Saman Zarnani, and Andrew Gaskin. (2007). “Shaking table testing of geofoam seismic buffers.” Soil Dynamics and Earthquake Engineering, Vol. 27, No. 4, pp. 324–332. DOI: 10.1016/j.soildyn.2006.08.003.

    Article  Google Scholar 

  • Bhowmik, D., Baidya, D. K., and Dasgupta, S. P. (2013). “A numerical and experimental study of hollow steel pile in layered soil subjected to lateral dynamic loading.” Soil Dynamics and Earthquake Engineering, Vol. 53, pp. 119–129. DOI: 10.1016/j.soildyn.2013.06.011.

    Article  Google Scholar 

  • Bowles, J. E. (1988). Foundation analysis and design, McGraw-Hill, 5th edition, 1996, pp. 650–700.

    Google Scholar 

  • British standards Institute (BSI) (1986). Foundations, BS 8004. London.

    Google Scholar 

  • Cao, X. D., Wong, I. H., and Chang, M. F. (2004). “Behavior of model rafts resting on pile-reinforced sand.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 2, pp. 129–138. DOI: 10.1061/(ASCE)1090-0241(2004)130:2(129).

    Article  Google Scholar 

  • Cooke, R. W. (1986). “Piled raft foundations on stiff clays—a contribution to design philosophy.” Geotechnique, Vol. 36, No. 2, pp. 169–203. DOI: 10.1680/geot.1986.36.2.169.

    Article  Google Scholar 

  • Fioravante, V. and Giretti, D. (2010). “Contact versus noncontact piled raft foundations.” Canadian Geotechnical Journal, Vol. 47, No. 11, pp. 1271–1287. DOI: 10.1139/T10-021.

    Article  Google Scholar 

  • Gohl, W. B. and Finn, W. D. L. (1987). “Seismic response of single piles in shaking table studies.” In: Fifth Canadian Conference Earthquake Engineering, pp. 435–444.

    Google Scholar 

  • Hamada, J., Tsuchiya, T., Tanikawa, T., and Yamashita, K. (2012). “Lateral loading model tests on piled rafts and their evaluation with simplified theoretical equations.” In Proceedings of the 9th International Conference on Testing and Design Methods for Deep Foundations (ISKanazawa 2012), Vol. 1, pp. 467–476.

    Google Scholar 

  • Hecht, T. and Dürwang, R. (2001). “Optimierung der Gründung der Reichenbachtalbrükemit der Kominierten Pfahl-Plattengrüdung.” Pfahl-Symposium, 2001, pp. 21–34.

    Google Scholar 

  • Helwany, Sam (2007). Applied soil mechanics with ABAQUS applications, John Wiley & Sons.

    Book  MATH  Google Scholar 

  • Horikoshi, K., Matsumoto, T., Hashizume, Y., and Watanabe, T. (2003). “Performance of piled raft foundations subjected to dynamic loading.” International Journal of Physical Modelling in Geotechnics, Vol. 3, No. 2, pp. 51–62. DOI: 10.1680/ijpmg.2003.030204.

    Article  Google Scholar 

  • Iai, S., Tobita, T., and Nakahara, T. (2005). “Generalized scaling relations for dynamic centrifuge tests.” Géotechnique, Vol. 55, No.5-3 pp. 355–362.

    Article  Google Scholar 

  • Kramer, Steven L. (1996). Geotechnical earthquake engineering, Pearson Education India.

    Google Scholar 

  • Ladd, R. S. (1978). “Preparing test specimens using undercompaction.” Geotechnical Testing Journal, Vol. 1, No. 1, pp. 16–23. DOI: 10.1520/GTJ10364J.

    Article  Google Scholar 

  • Lam, S. Y., Ng, C. W. W., Leung, C. F., and Chan, S. H. (2009). “Centrifuge and numerical modeling of axial load effects on piles in consolidating ground.” Can Geotech J., Vol. 46, pp. 10–24. DOI:8-0.1139/T08-095.

    Article  Google Scholar 

  • Lee, C. J. and Ng, C. W. W. (2004). “Development of downdrag on piles and pile groups in consolidating soil.” J. Geotech Geoenviron Eng., Vol. 130, No. 2, pp. 905–914. DOI: 10.1061/(ASCE)1090 0241 (2004)130:9(905).

    Article  Google Scholar 

  • Lee, J., Kim, Y., and Jeong, S. (2010). “Three-dimensional analysis of bearing behavior of piled raft on soft clay.” Computers and Geotechnics, Vol. 37, No. 1, pp. 103–114. DOI: 10.1016/j.compgeo. 2009.07.009.

    Article  Google Scholar 

  • Maheshwari, B. K., Truman, K. Z., El Naggar, M. H., and Gould, P. L. (2004). “Three-dimensional nonlinear analysis for seismic soil–pilestructure interaction.” Soil Dynamics and Earthquake Engineering, Vol. 24, No. 4, pp. 343–356. DOI: 10.1016/j.soildyn.2004.01.001.

    Article  Google Scholar 

  • Matsumoto, T. (2013). “Implications for design of piled raft foundations subjected lateral loading.” In Proc. Int. Symp. on Advances in Foundation Engineering, Singapore, pp. 113–136.

    Chapter  Google Scholar 

  • Matsumoto, T., Fukumura, K., Horikoshi, K., and Oki, A. (2004). “Shaking table tests on model piled rafts in sand considering influence of superstructures.” International Journal of Physical Modelling in Geotechnics, Vol. 4, No. 3, pp. 21–38. DOI: 10.1680/ijpmg.2004. 040302.

    Article  Google Scholar 

  • Nguyen-Thanh, N., Valizadeh, N., Nguyen, M. N., Nguyen-Xuan, H., Zhuang, X., Areias, P., Zi, G., Bazilevs, Y., De Lorenzis, L., and Rabczuk, T. (2015). “An extended isogeometric thin shell analysis based on Kirchhoff–Love theory.” Computer Methods in Applied Mechanics and Engineering, Vol. 284, pp. 265–291. DOI: 10.1016/j.cma.2014.08.025.

    Article  MathSciNet  Google Scholar 

  • Nguyen-Thanh, Nhon, Kiendl, J., Nguyen-Xuan, H., Wüchner, R., Bletzinger, K. U., Bazilevs, Y., and Rabczuk, T. (2011). “Rotation free isogeometric thin shell analysis using PHT-splines.” Computer Methods in Applied Mechanics and Engineering, Vol. 200, No. 47, pp. 3410–3424. DOI: 10.1016/j.cma.2011.08.014.

    Article  MathSciNet  MATH  Google Scholar 

  • Pastsakorn, K., Hashizume, Y., and Matsumoto, T. (2002). “Lateral load tests on model pile groups and piled raft foundations in sand.” In Proc. Int. Conf. Physical Modelling in Geomechanics, St. John’s, Canada, pp. 709–714.

    Google Scholar 

  • Poulos, H. G., Small, J. C., and Chow, H. (2011). “Piled raft foundations for tall buildings.” Geotechnical Engineering Journal of the SEAGS and AGSSEA, Vol. 42, No. 2, pp. 78–84.

    Google Scholar 

  • Randolph, M. F. and Clancy, P. (1993). “Efficient design of piled rafts.” In Proceedings 2nd International Seminar Deep Foundation at Ghent, Belgium, pp. 119–130.

    Google Scholar 

  • Saeedi Azizkandi, A., Baziar, M. H., Modarresi, M., Salehzadeh, H., and Rasouli, H. (2014). “Centrifuge modeling of pile-soil-pile interaction considering relative density and toe condition.” Scientia Iranica, Vol. 21, No. 4, pp. 1330–1339.

    Google Scholar 

  • Saeedi Azizkandi, A., Baziar, M. H., Rasouli, H., Modarresi, M., and Shahnazari, H. (2015). “Centrifuge modeling of non-connected piled raft system.” International Journal of Civil Engineering, Vol. 13, No. 2, pp. 114–123. DOI: 10.22068/IJCE.13.2.114.

    Google Scholar 

  • Sawada, K. and Takemura, J. (2014). “Centrifuge model tests on piled raft foundation in sand subjected to lateral and moment loads.” Soils and Foundations, Vol. 54, No. 2, pp. 126–140. DOI: 10.1016/j.sandf.2014.02.005.

    Article  Google Scholar 

  • Shahnazari, H., Shahin, M. A., and Tutunchian, M. A. (2014). “Evolutionarybased approaches for settlement prediction of shallow foundations on cohesionless soils.” Int. J. Civ. Eng., Vol. 12, No. 1, pp. 55–64.

    Google Scholar 

  • Shahnazari, H., Salehzadeh, H., Rezvani, R., and Dehnavi, Y. (2014). “The effect of shape and stiffness of originally different marine soil grains on their contractive and dilative behavior.” KSCE J. Civ. Eng., Vol. 18, No. 4, pp. 975–983. DOI: 10.1007/s12205-014-0286-8.

    Article  Google Scholar 

  • Tradigo, F., Pisanò, F., di Prisco, C., and Mussi, A. (2015). “Non-linear soil–structure interaction in disconnected piled raft foundations.” Computers and Geotechnics, Vol. 63, pp. 121–134. DOI: 10.1016/j.compgeo.2014.08.014.

    Article  Google Scholar 

  • Valsangkar, A. J., Dawe, J. L., Mita, K. A. (1991). “Shake table studies of seismic response of single partially supported piles.” In: Sixth Canadian Conference Earthquake Engineering, pp. 327–34.

    Google Scholar 

  • Wong, I. H., Chang, M. F., and Cao, X. D. (2000). “Raft foundations with disconnected settlement reducing piles.” Design Applications of Raft Foundations, Chap. 17. Thomas Telford, London, pp. 469–486.

    Chapter  Google Scholar 

  • Yamada, T., Yamashita, K., Kakurai, M., Tsukatani, H. (2001). “Longterm behavior of tall building on raft foundation constructed by topdown method.” In Proc. 5th Int. conference on deep foundation practice incorporating PILETALK international 2001. Singapore, pp. 411–417.

    Google Scholar 

  • Yamashita, K., Hamada, J., and Yamada, T. (2011). “Field measurements on piled rafts with grid-form deep mixing walls on soft ground.” Geotechnical Engineering Journal of the SEAGS & AGSSEA, Vol. 42, No. 2, pp. 1–10.

    Google Scholar 

  • Yamashita, K., Hamada, J., Onimaru, S., and Higashino, M. (2012). “Seismic behavior of piled raft with ground improvement supporting a base-isolated building on soft ground in Tokyo.” Soils and Foundations, Vol. 52, No. 5, pp. 1000–1015. DOI: 10.1016/j.sandf.2012.11.017.

    Article  Google Scholar 

  • Yamashita, K., Kakurai, M., Yamada, T., and Kuwabara, F. (1993). “Settlement behavior of a five-story building on a piled raft foundation.” Deep Foundations on Bored and Auger piles, pp. 351–256.

    Google Scholar 

  • Yamashita, K., Yamada, T., and Hamada, J. (2011). “Investigation of settlement and load sharing on piled rafts by monitoring full-scale structures.” Soils and Foundations, Vol. 51, No. 3, pp. 513–532. DOI: 10.3208/sandf.51.513.

    Article  Google Scholar 

  • Yamashita, K., Junji H., Sadatomo O., and Masahiko H. (2012). “Seismic behavior of piled raft with ground improvement supporting a base-isolated building on soft ground in Tokyo.” Soils and Foundations, Vol. 52, No. 5, pp. 1000–1015. DOI: 10.1016/j.sandf.2012.11.017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Saeedi Azizkandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizkandi, A.S., Baziar, M.H. & Yeznabad, A.F. 3D Dynamic Finite Element Analyses and 1 g Shaking Table Tests on Seismic Performance of Connected and Nonconnected Piled Raft Foundations. KSCE J Civ Eng 22, 1750–1762 (2018). https://doi.org/10.1007/s12205-017-0379-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-0379-2

Keywords

Navigation