Skip to main content
Log in

Investigation of Hydration Temperature of Alkali Activated Slag Based Concrete

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

This paper presents the results of an investigation on the effect of activator type, binder amount and sodium dosage on hydration heats of Alkali-Activated Slag (AAS) concrete. For the slag activation, sodium hydroxide (NaOH) pellets and the mixture of NaOH+liquid sodium silicate (Na2SiO3) were used at three sodium concentrations, 4%, 6% and 8% by mass of slag. Twenty one different mixtures were prepared for the laboratory tests. In the reference three mixtures, OPC was used as binder and in the other AAS mixtures Granulated Blast Furnace Slag (GBFS) was used. The binder dosages were 300, 350 and 400 kg/m3 and the waterbinder (w/b) ratio used in the mixtures was 0.50. The compressive strength and hydration temperature of produced concretes were measured. The temperature change of specimens measured in every 15 minutes until 120 hours. The test results showed that, the compressive strengths and hydration temperatures of the mixtures increased depending on increasing binder amount and sodium dosage. The use of NaOH+Na2SiO3 mixture as activator increased compressive strength but decreased hydration temperature of the mixtures. The hydration temperatures of all AAS mixtures were lower than OPC mixtures. Produced AAS concrete with low hydration temperature can be an alternative in recycled construction material at mass concrete applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akçaözoğlu, S. and Atiş, C. D. (2011). “Effect of granulated blast furnace slag and fly ash addition on the strength properties of lightweight mortars containing waste PET aggregates.” Construction and Building Materials, Vol. 25, pp. 4052–4058, DOI: 10.1016/j.conbuildmat. 2011.04.042.

    Article  Google Scholar 

  • Akçaözoğlu, S. and Ulu, C. (2014). “Recycling of waste PET granules as aggregate in alkali-activated blast furnace slag/metakaolin blends.” Construction and Building Materials, Vol. 58, pp. 31–37, DOI: 10.1016/j.conbuildmat.2014.02.011.

    Article  Google Scholar 

  • Angulo-Ramirez, D. E., Gutierrez, R. M. and Puertas, F. (2017) “Alkaliactivated Portland blast-furnace slag cement: Mechanical properties and hydration.” Construction and Building Materials, Vol. 140, pp. 119–128, DOI: 10.1016/j.conbuildmat.2017.02.092.

    Article  Google Scholar 

  • ASTM C 989 (1994). Standard specification for ground granulated blast furnace slag for use in concrete and mortars, ASTM International, U.S.A.

  • Atiş, C. D., Bilim, C., Çelik, Ö. and Karahan, O. (2009). “Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar.” Construction and Building Materials, Vol. 23, pp. 548–555, DOI: 10.1016/j.conbuildmat.2007.10.011.

    Article  Google Scholar 

  • Aydın, S. and Baradan, B. (2014). “Effect of activator type and content on properties of alkali-activated slag mortars.” Composites Part B: Engineering, Vol. 57, pp. 166–172, DOI: 10.1016/j.compositesb.2013. 10.001.

    Article  Google Scholar 

  • Bakharev, T., Sanjayan, J. G., and Cheng, Y.-B. (1999). “Alkali activation of Australian slag cements.” Cement and Concrete Research, Vol. 29, No. 00, pp. 113–120, DOI: 10.1016/S0008-8846(98)00170-7.

    Article  Google Scholar 

  • Bernal, S. A., Gutierrez, R. M. D., Pedraza, A. L., Provis, J. L., Rodriguez, E. D. and Delvasto, S. (2011). “Effect of binder content on the performance of alkali-activated slag concretes.” Cement and Concrete Research, Vol. 41, pp. 1–8, DOI: 10.1016/j.cemconres.2010.08.017.

    Article  Google Scholar 

  • Bernal, S. A., Gutierrez, R. M., and Provis, J. L. (2012). “Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends.” Construction and Building Materials, Vol. 33, pp. 99–108, DOI: 10.1016/j.conbuildmat. 2012.01.017.

    Article  Google Scholar 

  • Bilim, C., Karahan, O., Atiş, C. D., and İlkentapar, S. (2013). “Influence of admixtures on the properties of alkali-activated slag mortars subjected to different curing conditions.” Materials and Design, Vol. 44, pp. 540–547, DOI: 10.1016/j.matdes.2012.08.049.

    Article  Google Scholar 

  • Bilim, C., Karahan, O., Atiş, C. D., and İlkentapar, S. (2015). “Effects of chemical admixtures and curing conditions on some properties of alkali-activated cementless slag mixtures.” KSCE Journal of Civil Engineering, KSCE, Vol. 19, No. 3, pp. 733–741, DOI: 10.1007/s12205-015-0629-0.

    Article  Google Scholar 

  • Bondar, D., Lynsdale, C. J., Milestone, N. B., Hassani, N., and Ramezanianpour, A. A. (2011). “Effect of type, form, and dosage of activators on strength of alkali-activated natural pozzolans.” Cement and Concrete Composites, Vol. 33, pp. 251–260, DOI: 10.1016/j.cemconcomp.2010.10.021.

    Article  Google Scholar 

  • Brough. A. R. and Atkinson, A. (2002). “Sodium silicate-based alkaliactivated slag mortars. Part I, Strength, hydration and microstructure.” Cement and Concrete Research, Vol. 32, pp. 865–879, DOI: 10.1016/S0008-8846(02)00717-2.

    Article  Google Scholar 

  • Chi, M. (2012). “Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete.” Construction and Building Materials, Vol. 35, pp. 240–245, DOI: 10.1016/j.conbuildmat.2012.04.005.

    Article  Google Scholar 

  • Escalante-Garcia, J. I., Magallanes-Rivera, R. X., and Gorokhovsky, A. (2009). “Waste gypsum–blast furnace slag cement in mortars with granulated slag and silica sand as aggregates.” Construction and Building Materials, Vol. 23, pp. 2851–2855, DOI: 10.1016/j.conbuildmat. 2009.02.032.

    Article  Google Scholar 

  • Esmaily, H. and Nuranian, H. (2012). “Non-autoclaved high strength cellular concrete from alkali-activated slag.” Construction and Building Materials, Vol. 26, pp. 200–206, DOI: 10.1016/j.conbuildmat. 2011.06.010.

    Article  Google Scholar 

  • Guerrieri, M. and Sanjayan, J. G. (2010). “Behavior of combined fly ash/slag-based geopolymers when exposed to high temperatures.” Fire and Materials, Vol. 34, pp. 163–175, DOI: 10.1002/fam.1014.

    Google Scholar 

  • Jimenez, A. F. and Puertas, F. (1997). “Alkali-activated slag cements: Kinetic studies.” Cement and Concrete Research, Vol. 27, No. 3, pp. 359–368, DOI: 10.1016/S0008-8846(97)00040-9.

    Article  Google Scholar 

  • Jimenez, A. F., Palomo, J. G., and Puertas, F. (1999). “Alkali-activated slag mortars mechanical strength behavior.” Cement and Concrete Research, Vol. 29, pp. 1313–1321, DOI: 10.1016/S0008-8846(99)00154-4.

    Article  Google Scholar 

  • Katz, A. (1998). “Microscopic study of alkali-activation fly ash.” Cement and Concrete Research, Vol. 28, pp. 197–208, DOI: 10.1016/S0008-8846(97)00271-8.

    Article  Google Scholar 

  • Kim, J. C. and Hong, S. Y. (2001). “Liquid concentration changes during slag cement hydration by alkali activation.” Cement and Concrete Research, Vol. 31, pp. 283–285, DOI: 10.1016/S0008-8846(00)00455-5.

    Article  Google Scholar 

  • Krizan, D. and Zivanovic, B. (2002). “Effects of dosage and modulus of water glass on early hydration of alkali–slag cements.” Cement and Concrete Research, Vol. 32, pp. 1181–1188, DOI: 10.1016/S0008-8846(01)00717-7.

    Article  Google Scholar 

  • Murri, A. N., Rickard, W. D. A., Bignozzi, M. C., and Riessen, A. (2013). “High temperature behavior of ambient cured alkali-activated materials based on ladle slag.” Cement and Concrete Research, Vol. 43, pp. 51–61, DOI: 10.1016/j.cemconres.2012.09.011.

    Article  Google Scholar 

  • Nadoushan, M. J. and Ramezanianpour, A. A. (2016). “The effect of type and concentration of activators on flowability and compressive strength of natural pozzolan and slag-based geopolymers.” Construction and Building Materials, Vol. 111, pp. 337–347, DOI: 10.1016/j.conbuildmat.2016.02.086.

    Article  Google Scholar 

  • Puertas F., Martinez-Ramirez, S., Alonso, S., and Vazquez, T. (2000). “Alkali-activated fly ash/slag cements. Strength behaviour and hydration products.” Cement and Concrete Research, Vol. 30, No. 10, pp. 1625–1632, DOI: 10.1016/S0008-8846(00)00298-2.

    Article  Google Scholar 

  • Puertas, F., Amat, T., Jimenez, F. A. and Vazquez, T. (2003). “Mechanical and durable behavior of alkaline cement mortars reinforced with polypropylene fibers.” Cement and Concrete Research, Vol. 33, pp. 2031–2036, DOI: 10.1016/S0008-8846(03)00222-9.

    Article  Google Scholar 

  • Rashad, A. M., Bai, Y., Basheer, P. A. M., Milestone, N. B., and Collier, N. C. (2013). “Hydration and properties of sodium sulfate activated slag.” Cement and Concrete Composites, Vol. 37, pp. 20–29, DOI: 10.1016/j.cemconcomp.2012.12.010.

    Article  Google Scholar 

  • Shi, C. and Day, R. L. (1995). “A Calorimetric study of early hydration alkali-slag cements.” Cement and Concrete Research, Vol. 25, No. 6, pp. 1333–1346, DOI: 10.1016/0008-8846(95)00126-W.

    Article  Google Scholar 

  • Shi, C. and Fernandez-Jimenez, A. (2006). “Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements.” Journal of Hazardous Materials, Vol. 137, No. 3, pp. 1656–1663, DOI: 10.1016/j.jhazmat.2006.05.008.

    Article  Google Scholar 

  • Shi, C., Day, R. L., Wu, X., and Tang, M. (1992). “Comparison of the microstructure and performance of alkali slag and Portland cement pastes.” 9th International Congress on the Chemistry of Cement, New Delhi, Vol. III, pp. 298–304.

    Google Scholar 

  • Shi, C., Roy, D. M., and Krivenko, P. V. (2006). Alkali-Activated Cements and Concretes, Taylor & Francis: London, U.K.

    Book  Google Scholar 

  • Shi, Z., Shi, C., Wan, S., and Ou, Z. (2017). “Effect of alkali dosage on alkali-silica reaction in sodium hydroxide activated slag mortars.” Construction and Building Materials, Vol. 143, pp. 16–23, DOI: 10.1016/j.conbuildmat.2017.03.125.

    Article  Google Scholar 

  • Singh, G. V. P. B and Subramaniam, K. V. L. (2017) “Evaluation of sodium content and sodium hydroxide molarity on compressive strength of alkali activated low-calcium fly ash.” Cement and Concrete Composites, Vol. 81, pp. 122–132, DOI: 10.1016/j.cemconcomp.2017.05.001.

    Article  Google Scholar 

  • TS 706 EN 12620+A1 (2009). Aggregates for concrete; Turkish Standard Institute, Ankara (in Turkish).

  • TS 802 (2009). Design concrete mixes, Turkish Standard Institute, Ankara (in Turkish).

  • TS EN 1097-6 (2002). Tests for mechanical and physical properties of aggregates-Part 6: Determination of particle density and water absorption, Turkish Standard Institute, Ankara (in Turkish).

  • TS EN 12390-3 (2010). Testing hardened concrete -Part 3: Compressive strength of test specimens, Turkish Standard Institute, Ankara (in Turkish).

  • TS EN 197-1 (2012). Cement - Part 1: Composition, specification and conformity criteria for common cements, Turkish Standard Institute, Ankara (in Turkish).

  • Wang, S. D. and Scrivener, K. L. (1995). “Hydration products of alkali activated slag cement.” Cement and Concrete Research, Vol. 25, pp. 561–571, DOI: 10.1016/0008-8846(95)00045-E.

    Article  Google Scholar 

  • Wang, S. D., Pu, X. C., Scrivener, K. L., and Pratt, P. L. (1995). “Alkali activated slag cement and concrete: A review of properties and problems.” Advances in Cement Research, Vol. 7, pp. 93–102, DOI: 10.1680/adcr.1995.7.27.93.

    Article  Google Scholar 

  • Wang, S. D., Scrivener, K. L., and Pratt, P. L. (1994). “Factors affecting the strength of alkaliactivated slag.” Cement and Concrete Research, Vol. 24, pp. 1033–1043, DOI: 10.1016/0008-8846(94)90026-4.

    Article  Google Scholar 

  • Yang, W.-H., Ryu, D.-W., Park, D.-C., Kim, W.-J., and Seo, C.-H. (2014). “A study of the effect of light-burnt dolomite on the hydration of alkali-activated Portland blast-furnace slag cement.” Construction and Building Materials, Vol. 57, pp. 24–29, DOI: 10.1016/j.conbuildmat.2014.01.071.

    Article  Google Scholar 

  • Ye, h., Cartwright, C., Rajabipour, F., and Radlinska, A. (2017). “Understanding the drying shrinkage performance of alkali-activated slag mortars.” Cement and Concrete Composites, Vol. 76, pp. 13–24, DOI: 10.1016/j.cemconcomp.2016.11.010.

    Article  Google Scholar 

  • Zivica, V. (2006). “Effectiveness of new silica fume alkali activator.” Cement and Concrete Composites, Vol. 28, pp. 21–25, DOI: 10.1016/j. cemconcomp.2005.07.004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kubilay Akçaözoğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akçaözoğlu, K., Akçaözoğlu, S. & Açıkgöz, A. Investigation of Hydration Temperature of Alkali Activated Slag Based Concrete. KSCE J Civ Eng 22, 2994–3002 (2018). https://doi.org/10.1007/s12205-017-0219-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-0219-4

Keywords

Navigation