Skip to main content
Log in

The entrainment effect of a debris avalanche on the erodible substrate in the presence of water flow

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Debris avalanches generally entrain the erodible deposits on their runout path, which can greatly influence their movement process, particularly in the presence of water flow. To study the entrainment effect of debris avalanches, physical modeling experiments were conducted that considered the impact of hopper elevation, the grain size of substrate materials and water flow. The experiment results indicate that the materials entrained by a debris avalanche increase with an increase in elevation of the hopper and particle size of the substrate materials in the rear region of the substrate. The presence of water flow can magnify the entrainment effect and enhance the mobility of the debris avalanche. However, the effect of water flow on the entrainment effect is significantly related to the grain size of the deposits. With a decrease in grain size, a water stream is easier to generate, which can cause intense scouring of the substrate materials and enhance the mobility of the mixed flow of debris and entrained deposits, ultimately leading to a greater affected area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Hussaini, M. (1983). “Effect of particle size and strain conditions on the strength of crushed basalt.” Canadian Geotechnical Journal, Vol. 20, Issue 4, pp. 706–717, DOI: 10.1139/t83-077.

    Article  Google Scholar 

  • Bolton, M. D. and Lau, C. K. (1989). “Scale effects in the bearing capacity of granular soils.” In: Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Brazil, pp. 895–898.

    Google Scholar 

  • Berger, C., Mcardell, B. W., and Schlunegger, F. (2011). “Direct measurement of channel erosion by debris flows, illgraben, Switzerland.” Journal of Geophysical Research, Vol. 116, Issue F1, pp. 93–104, DOI: 10.1029/2010JF001722.

    Article  Google Scholar 

  • Blasio, F. V. D. (2014). “Friction and dynamics of rock avalanches travelling on glaciers.” Geomorphology, Vol. 213, Issue 10, pp. 88–98, DOI: 10.1016/j.geomorph.2014.01.001.

    Article  Google Scholar 

  • Crosta, G. B., Imposimato, S., and Roddeman, D. (2009). “Numerical modelling of entrainment/deposition in rock and debris-avalanches.” Engineering Geology, Vol. 109, Issue 1-2, pp. 135–145, DOI: 10.1016/j.enggeo.2008.10.004.

    Article  Google Scholar 

  • Crosta, G. B., De Blasio, F. V., Locatelli, M., Imposimato, S., and Roddeman, D. (2015). “Landslides falling onto a shallow erodible substrate or water layer: An experimental and numerical approach.” IOP Conference Series: Earth and Environmental Science, Vol. 26, Article ID012004, pp. 1–25, DOI: 10.1088/1755-1315/26/1/012004.

    Google Scholar 

  • Dufresne, A., Salinas, S., and Siebe, C. (2010). “Substrate deformation associated with the Jocotitlán edifice collapse and debris avalanche deposit, Central México.” Journal of Volcanology and Geothermal Research, Vol. 197, Issue 1-4, pp. 133–148, DOI: 10.1016/j.jvolgeores. 2010.02.019.

    Article  Google Scholar 

  • Dufresne, A. (2012). “Granular flow experiments on the interaction with stationary runout path materials and comparison to rock avalanche events.” Earth Surface Processes and Landforms, Vol. 37, Issue 14, pp. 1527–1541, DOI: 10.1002/esp.3296.

    Article  Google Scholar 

  • Dai, B. B., Yang, J. and Zhou, C. Y. (2014). “A preliminary investigation on effect of particle size on mechanical behavior of granular materials.” Rock and Soil Mechanics, Vol. 35, pp. 1878–1884 (in Chinese with English abstract).

    Google Scholar 

  • Hu, W., Dano, C., Hicher, P. Y., Le Touzo, J. Y., Derkx, F., and Merliot, E. (2011). “Effect of sample size on the behavior of granular materials.” Geotechnical Testing Journal, Vol. 34, Issue 3, pp. 186–197, DOI: 10.1520/GTJ103095.

    Google Scholar 

  • Hu, W., Xu, Q., Wang, G. H., van Asch, T. W. J., and Hicher, P. Y. (2015). “Sensitivity of the initiation of debris flow to initial soil moisture.” Landslides, Vol. 12, Issue 6, pp. 1139–1145, DOI: 10.1007/s10346-014-0529-2.

    Article  Google Scholar 

  • Hungr, O. and Evans, S. G. (2004). “Entrainment of debris in rock avalanches: An analysis of a long run-out mechanism.” Geological Society of America Bulletin, Vol. 116, Nos. 9-10, pp. 1240–1252, DOI: 10.1130/B25362.1.

    Article  Google Scholar 

  • Hungr, O., McDougall, S., and Bovis, M. (2005). “Entrainment of material by debris flows.” In: Debris-flow hazards and related phenomena, Springer Berlin Heidelberg, pp. 135–158.

    Chapter  Google Scholar 

  • Huang, J., Xu, S., and Hu, S. (2013). “Effects of grain size and gradation on the dynamic responses of quartz sands.” International Journal of Impact Engineering, Vol. 59, pp. 1–10, DOI: 10.1016/j.ijimpeng.2013.03.007.

    Article  Google Scholar 

  • Iverson, R. M., Reid, M. E., Logan, M., LaHusen, R. G., Godt, J. W., and Griswold, J. P. (2011). “Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment.” Nature Geoscience, Vol. 4, No. 2, pp. 116–121, DOI: 10.1038/ngeo1040.

    Article  Google Scholar 

  • Imaizumi, F., Nishii, R., Murakami, W., and Daimaru, H. (2015). “Parallel retreat of rock slopes underlain by alternation of strata.” Geomorphology, Vol. 238, pp. 27–36, DOI: 10.1016/j.geomorph.2015.02.030.

    Article  Google Scholar 

  • King, J. P. (2013). Tsing Shan debris flow and debris flood, GEO Report No. 281, The Government of the Hong Kong Special Administrative Region, Hong Kong, pp. 1–268.

    Google Scholar 

  • Koo, B. W. and Kim, M. H. (2008). “Numerical modeling and analysis of waves induced by submerged and aerial/sub-aerial landslides.” KSCE Journal of Civil Engineering, Vol. 12, No. 2, pp. 77–83, DOI: 10.1007/s12205-008-0077-1.

    Article  Google Scholar 

  • Marschi, N. D., Chan, C. K., and Seed, H. B. (1972). “Evaluation of properties of rockfill materials.” Journal of Soil Mechanics and Foundations Division, Vol. 98, No. SM1, pp. 95–114.

    Google Scholar 

  • McDougall, S. and Hungr, O. (2005). “Dynamic modelling of entrainment in rapid landslide.” Canadian Geotechnical Journal, Vol. 42, Issue 5, pp. 1437–1448, DOI: 10.1139/t05-064.

    Article  Google Scholar 

  • McDougall, S., Boultbee, N., Hungr, O., Stead, D., and Schwab, J. W. (2006). “The zymoetz river landslide, british columbia, Canada: Description and dynamic analysis of a rock slide-debris flow.” Landslides, Vol. 3, Issue 3, pp. 195–204, DOI: 10.1007/s10346-006-0042-3.

    Article  Google Scholar 

  • Mangeney, A., Roche, O., Hungr, O., Mangold, N., Faccanoni, G., and Lucas, A. (2010). “Erosion and mobility in granular collapse over sloping beds.” Journal of Geophysical Research, Vol. 115, Issue F3, pp. 1–21, DOI: 10.1029/2009JF001462.

    Article  Google Scholar 

  • Opiso, E. M., Puno, G. R., Alburo, J. L., and Detalla, A. L. (2015). “Landslide susceptibility mapping using GIS and FR method along the Cagayan de Oro-Bukidnon-Davao City route corridor, Philippines.” KSCE Journal of Civil Engineering, Vol. 20, Issue 6, pp. 2506–2512, DOI: 10.1007/s12205-015-0182-x.

    Article  Google Scholar 

  • Shang, Y., Yang, Z., Li, L., Liu, D. A., Liao, Q., and Wang, Y. (2003). “A super-large landslide in Tibet in 2000: Background, occurrence, disaster, and origin.” Geomorphology, Vol. 54, Issues 3-4, pp. 225–243, DOI: 10.1016/S0169-555X(02)00358-6.

    Article  Google Scholar 

  • Sitharam, T. G. (1999). “Micromechanical modeling of granular materials: Effect of confining pressure on mechanical behavior.” Mechanics of Materials, Vol. 31, Issue 10, pp. 653–665, DOI: 10.1016/S0167-6636(99)00021-6.

    Article  Google Scholar 

  • Sitharam, T. G. and Nimbkar, M. S. (2000). “Micromechanical modelling of granular materials: Effect of particle size and gradation.” Geotechnical and Geological Engineering, Vol. 18, Issue 2, pp. 91–117, DOI: 10.1023/A:1008982027109.

    Article  Google Scholar 

  • Sassa, K. (1985). “The mechanism of debris flows.” In: Proceeding of the XI International Conference on Soil Mechanics and Foundation Engineering, San Francisco, pp. 1173–1176.

    Google Scholar 

  • Sassa, K. (1988). “Geotechnical model for the motion of landslides.” In: Proceeding of the 5th International Symposium on Landslides, Lausanne, Vol. 1, pp. 37–55.

    Google Scholar 

  • Sassa, K., Fukuoka, Wang G. H., and Ishikawa, N. (2004). “Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics.” Landslides, Vol. 1, Issue 1, pp. 7–19, DOI: 10.1007/s10346-003-0004-y.

    Article  Google Scholar 

  • Sassa, K., Nagai, O., Solidum, R., Yamazaki, Y., and Ohta, H. (2010). “An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide.” Landslides, Vol. 7, Issue 3, pp. 219–236, DOI: 10.1007/s10346-010-0230-z.

    Article  Google Scholar 

  • Wang, G. H., Sassa, K., and Fukuoka, H. (2003). “Downslope volume enlargement of a debris slide-debris flow in the 1999 Hiroshima, Japan, rainstorm.” Engineering geology, Vol. 69, Issues 3-4, pp. 309–330, DOI: 10.1016/S0013-7952(02)00289-2.

    Article  Google Scholar 

  • Wang, G. H., Huang, R. Q., Chigira, M., Wu, X. Y., and Lourenço, S. D. (2013). “Landslide amplification by liquefaction of runout-path material after the 2008 Wenchuan (M 8.0) Earthquake, China.” Earth Surface Processes and Landforms, Vol. 38, Issue 3, pp. 265–274, DOI: 10.1002/esp.3277.

    Article  Google Scholar 

  • Zhou, J. W., Cui, P., and Yang, X. G. (2013a). “Dynamic process analysis for the initiation and movement of the Donghekou landslide-debris flow triggered by the Wenchuan earthquake.” Journal of Asian Earth Sciences, Vol. 76, pp. 70–84, DOI: 10.1016/j.jseaes.2013.08.007.

    Article  Google Scholar 

  • Zhou, J.W., Cui, P., Yang, X. G., Su, Z. M., and Guo, X. J. (2013b). “Debris flows introduced in landslide deposits under rainfall conditions: The case of Wenjiagou gully.” Journal of Mountain Science, Vol. 10, Issue 2, pp. 249–260, DOI: 10.1007/s11629-013-2492-0.

    Article  Google Scholar 

  • Zhou, J. W., Cui, P., and Hao, M. H. (2016). “Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China.” Landslides, Vol. 13, Issue 1, pp. 39–54, DOI: 10.1007/s10346-014-0553-2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-wen Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Py., Yang, Xg. & Zhou, Jw. The entrainment effect of a debris avalanche on the erodible substrate in the presence of water flow. KSCE J Civ Eng 22, 83–91 (2018). https://doi.org/10.1007/s12205-017-0090-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-0090-3

Keywords

Navigation