Skip to main content
Log in

Network-level Optimization of Bus Stop Placement in Urban Areas

  • Transportation Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Bus stops provide accessibility to public transit service, whereas they also influence the efficiency of mobility due to the extra dwell time. The decision of bus stop locations is a tradeoff between access coverage and mobility. This paper formulates a biobjective optimization model of bus stop placement problem at the network level. Two objectives are pertinent to the improvement of mobility: minimization of total dwell time at stops and minimization of total number of bus stops. Access coverage is constrained to ensure a certain level of accessibility. The issue of stop congestion and its effect on road traffic flow is also considered in the model. The model is applied to a case study of the bus network in urban areas of Yancheng, China. The results show that the proposed model can be efficiently solved by CPLEX to obtain Pareto optimal solutions for real-case problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, B., Hounsell, N., and Shrestha, B. (2016). “Investigating bus priority parameters for isolated vehicle actuated junctions.” Transportation Planning and Technology, Vol. 39, No. 1, pp. 45–58, DOI: 10.1080/03081060.2015.1108082.

    Article  Google Scholar 

  • Ammons, D. N. (2001). Municipal benchmarks: Assessing local performance and establishing community standards, Thousand Oaks: Sage.

    Google Scholar 

  • Bie, Y., Gong, X., and Liu, Z. (2015). “Time of day intervals partition for bus schedule using GPS data.” Transportation Research Part C, Vol. 60,pp. 443-456, DOI: 10.1016/j.trc.2015.09.016.

    Google Scholar 

  • Burke, E. K. and Kendall, G. (2005). Search Methodologies, Springer US.

    Book  MATH  Google Scholar 

  • Ceder, A. A. (2007). Public transit planning and operation: Theory, In: Modeling and Practice. Butterworth-Heinemann, Oxford, UK.

    Book  Google Scholar 

  • Ceder, A. A., Butcher, M., and Wang, L. (2015). “Optimization of bus stop placement for routes on uneven topography.” Transportation Research Part B, Vol. 74, pp. 40–61, DOI: 10.1016/j.trb.2015.01.006.

    Article  Google Scholar 

  • Cervero, R., Sarmiento, O. L., Jacoby, E., Gomez, L. F., and Neiman, A. (2009). “Influences of built environments on walking and cycling: Lessons from Bogota.” International Journal of Sustainable Transportation, Vol. 3, No. 4, pp. 203–226, DOI: 10.1080/15568310802178314.

    Article  Google Scholar 

  • Chen, J., Currie, G., Wang, W., Liu, Z., and Li, Z. (2016). “Should optimal stop spacing vary by land use type? New methodology.” Transportation Research Record, No. 2543, pp. 34–44, DOI: 10.3141/2543-04.

    Article  Google Scholar 

  • Chen, J., Liu, Z., Zhu, S., and Wang, W. (2015). “Design of limited-stop bus service with capacity constraint and stochastic travel time.” Transportation research part E, Vol. 83, pp. 1–15, DOI: 10.1016/j.tre.2015.08.007.

    Article  Google Scholar 

  • Chen, J., Wang, S., Liu, Z., and Wang, W. (2017). “Design of suburban bus route for airport access.” Transportmetrica A: Transport Science, Vol. 13, No. 6, pp. 568–589, DOI: 10.1080/23249935.2017.1306896.

    Article  Google Scholar 

  • Chien, S. I. and Qin, Z. (2004). “Optimization of bus stop locations for improving transit accessibility.” Transportation Planning and Technology, Vol. 27, No. 3, pp. 211–227, DOI: 10.1080/0308106042000226899.

    Article  Google Scholar 

  • Chien, S., Byun, J., and Bladikas, A. (2010). “Optimal stop spacing and headway of congested transit system considering realistic wait times.” Transportation Planning and Technology, Vol. 33, No. 6, pp. 495–513, DOI: 10.1080/03081060.2010.505048.

    Article  Google Scholar 

  • Currie, G. (2010). “Quantifying spatial gaps in public transport supply based on social needs.” Journal of Transport Geography, Vol. 18, No. 1, pp. 31–41, DOI: 10.1016/j.jtrangeo.2008.12.002.

    Article  Google Scholar 

  • Currie, G., Sarvi, M., and Young, B. (2007). “A new approach to evaluating on-road public transport priority projects: Balancing the demand for limited road-space.” Transportation, Vol. 34, No. 4, pp. 413–428, DOI: 10.1007/s11116-006-9107-3.

    Article  Google Scholar 

  • dell’Olio, L., Ibeas, A., and Cecin, P. (2011). “The quality of service desired by public transport users.” Transport Policy, Vol. 18, No. 1, pp. 217–227, DOI: 10.1016/j.tranpol.2010.08.005.

    Article  Google Scholar 

  • dell’Olio, L., Moura, J. L., and Ibeas, A. (2006). “Bi-level mathematical programming model for locating bus stops and optimizing frequencies.” Transportation Research Record, No. 1971, pp. 23–31, DOI: 10.3141/1971-05.

    Article  Google Scholar 

  • Fan, Y., Guthrie, A., and Levinson, D. (2016). “Waiting time perceptions at transit stops and stations: Effects of basic amenities, gender, and security.” Transportation Research Part A, Vol. 88, pp. 251–264, DOI: 10.1016/j.tra.2016.04.012.

    Google Scholar 

  • Feng, S., Sun, X., and Wang, D. (2016). “The analysis and application of competition and cooperation between the bus lines.” KSCE Journal of Civil Engineering, Vol. 20, No. 4, pp. 1540–1545, DOI: 10.1007/s12205-015-0030-z.

    Article  Google Scholar 

  • Feng, T., Zhang, J., Fujiwara, A., and Timmermans, H. J. (2010). “An integrated model system and policy evaluation tool for maximizing mobility under environmental capacity constraints: A case study in Dalian City, China.” Transportation Research Part D, Vol. 15, No. 5, pp. 263–274, DOI: 10.1016/j.trd.2010.03.001.

    Article  Google Scholar 

  • Foth, N., Manaugh, K., and El-Geneidy, A. M. (2013). “Towards equitable transit: Examining transit accessibility and social need in Toronto, Canada, 1996-2006.” Journal of Transport Geography, Vol. 29, pp. 1–10, DOI: 10.1016/j.jtrangeo.2012.12.008.

    Article  Google Scholar 

  • Greenwald, M. and Boarnet, M. (2001). “Built environment as determinant of walking behavior: Analyzing nonwork pedestrian travel in Portland, Oregon.” Transportation Research Record, No. 1780, pp. 33–41, DOI: 10.3141/1780-05.

    Article  Google Scholar 

  • Hahn, J. S., Kim, H. R., and Kho, S. Y. (2011). “Analysis of the efficiency of Seoul Arterial Bus routes and its determinant factors.” KSCE Journal of Civil Engineering, Vol. 15, No. 6, pp. 1115–1123, DOI: 10.1007/s12205-011-1273-y.

    Article  Google Scholar 

  • Hess, D. B. (2009). “Access to public transit and its influence on ridership for older adults in two U.S. cities.” Journal of Transport & Land Use, Vol. 2, No. 1, pp. 3–27, DOI: 10.5198/jtlu.v2i1.11.

    Article  Google Scholar 

  • Huang, D., Liu, Z., Liu, P., and Chen, J. (2016). “Optimal transit fare and service frequency of a nonlinear origin-destination based fare structure.” Transportation Research Part E, Vol. 96, pp. 1–19, DOI: 10.1016/j.tre.2016.10.004.

    Article  Google Scholar 

  • Ibarra-Rojas, O. J., Delgado, F., Giesen, R., and Muñoz, J. C. (2015). “Planning, operation, and control of bus transport systems: A literature review.” Transportation Research Part B, Vol. 77, pp. 38–75, DOI: 10.1016/j.trb.2015.03.002.

    Article  Google Scholar 

  • Ibeas, Á., dell'Olio, L., Alonso, B., and Sainz, O. (2010). “Optimizing bus stop spacing in urban areas.” Transportation Research Part E, Vol. 46, No. 3, pp. 446–458, DOI: 10.1016/j.tre.2009.11.001.

    Article  Google Scholar 

  • Kepaptsoglou, K. and Karlaftis, M. (2009). “Transit route network design problem: Review.” Journal of Transportation Engineering, Vol. 135, No. 8, pp. 491–505, DOI: 10.1061/(ASCE)0733-947X (2009)135:8(491).

    Article  Google Scholar 

  • Kim, K. W. and Lee, D. W. (2008). “A model to estimate the marginal walking time of bus users by using adaptive neuro-fuzzy inference system.” KSCE Journal of Civil Engineering, Vol. 12, No. 3, pp. 197–204, DOI: 10.1007/s12205-008-0197-7.

    Article  Google Scholar 

  • Kim, K. W., Lee, D. W., and Chun, Y. H. (2010). “A comparative study on the service coverages of subways and buses.” KSCE Journal of Civil Engineering, Vol. 14, No. 6, pp. 915–922, DOI: 10.1007/s12205-010-0987-6.

    Article  Google Scholar 

  • Levinson, H. S. (1983). Analyzing transit travel time performance. Transportation Research Record, No. 915, pp. 1–6, http://onlinepubs. trb.org/Onlinepubs/trr/1983/915/915-001.pdf.

    Google Scholar 

  • Lin, Y., Yang, X., Zou, N., and Franz, M. (2015). “Transit signal priority control at signalized intersections: A comprehensive review.” Transportation Letters, Vol. 7, No. 3, pp. 168–180, DOI: 10.1179/1942787514Y.0000000044.

    Article  Google Scholar 

  • Litman, T. (2003). “Measuring transportation: Traffic, mobility and accessibility. Institute of Transportation Engineers.” ITE Journal -Institute of Transportation Engineers, Vol. 73, No. 10, pp. 28–32.

    Google Scholar 

  • Liu, Z., Wang, S., Zhou, B., and Cheng, Q. (2017). “Robust optimization of distance-based tolls in a network considering stochastic day to day dynamics.” Transportation Research Part C, Vol. 79, pp. 58–72. DOI: 10.1016/j.trc.2017.03.011.

    Article  Google Scholar 

  • McLeod, F. and Hounsell, N. (2003). “Bus priority at traffic signals -evaluating strategy options.” Journal of Public Transportation, Vol. 6, No. 3, pp. 1–14, DOI: 10.5038/2375-0901.6.3.1.

    Article  Google Scholar 

  • Moniruzzaman, M. and Páez, A. (2012). “Accessibility to transit, by transit, and mode share: application of a logistic model with spatial filters.” Journal of Transport Geography, Vol. 24, No. 3, pp. 198–205, DOI: 10.1016/j.jtrangeo.2012.02.006.

    Article  Google Scholar 

  • Murray, A. T. (2003). “A coverage model for improving public transit system accessibility and expanding access.” Annals of Operations Research, Vol. 123, No. 1, pp. 143–156, DOI: 10.1023/A:1026123329433.

    Article  MathSciNet  MATH  Google Scholar 

  • Murray, A. T. and Wu, X. (2003). “Accessibility tradeoffs in public transit planning.” Journal of Geographical Systems, Vol. 5, No. 1, pp. 93–107, DOI: 10.1007/s101090300105.

    Article  Google Scholar 

  • Murray, A. T., Davis, R., Stimson, R. J., and Ferreira, L. (1998). “Public transportation access.” Transportation Research Part D, Vol. 3, No. 5, pp. 319–328, DOI: 10.1016/S1361-9209(98)00010-8.

    Article  Google Scholar 

  • Owen, A. and Levinson, D. M. (2015). “Modeling the commute mode share of transit using continuous accessibility to jobs.” Transportation Research Part A, Vol. 74, pp. 110–122, DOI: 10.1016/j.tra.2015.02.002.

    Google Scholar 

  • Saka, A. A. (2001). “Model for determining optimum bus-stop spacing in urban areas.” Journal of Transportation Engineering, Vol. 127, No. 3, pp. 195–199, DOI: 10.1061/(ASCE)0733-947X(2001)127:3(195).

    Article  Google Scholar 

  • Szeto, W. Y. and Jiang, Y. (2014). “Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach.” Transportation Research Part B, Vol. 67, pp. 235–263, DOI: 10.1016/j.trb.2014.05.008.

    Article  Google Scholar 

  • Tirachini, A. (2014). “The economics and engineering of bus stops: Spacing, design and congestion.” Transportation Research Part A. Vol. 59, pp. 37–57, DOI: 10.1016/j.tra.2013.10.010.

    Google Scholar 

  • Tirachini, A., Hensher, D. A., and Rose, J. M. (2014). “Multimodal pricing and optimal design of urban public transport: The interplay between traffic congestion and bus crowding.” Transportation Research Part B, Vol. 61, pp. 33–54, DOI: 10.1016/j.trb.2014.01.003.

    Article  Google Scholar 

  • Wright, L. and Hook, W. B. (2007). Bus rapid transit planning guide, New York: Institute for Transportation & Development Policy.

    Google Scholar 

  • Wu, B. M. and Hine, J. P. (2003). “A PTAL approach to measuring changes in bus service accessibility.” Transport Policy, Vol. 10, No. 4, pp. 307–320, DOI: 10.1016/S0967-070X(03)00053-2.

    Article  Google Scholar 

  • Yan, Y., Liu, Z., Meng, Q., and Jiang, Y. (2013). “Robust optimization model of bus transit network design with stochastic travel time.” Journal of Transportation Engineering, Vol. 139, No. 6, pp. 625–634, DOI: 10.1061/(ASCE)TE.1943-5436.0000536.

    Article  Google Scholar 

  • Zhao, F., Chow, L. F., Li, M. T., Ubaka, I., and Gan, A. (2003). “Forecasting transit walk accessibility: Regression model alternative to buffer method.” Transportation Research Record, No. 1835, pp. 34–41, DOI: 10.3141/1835-05.

    Article  Google Scholar 

  • Zhu, W., Yang, X., and Preston, J. (2016). “Efficiency measurement of bus routes and exogenous operating environment effects on efficiency.” Transportation Planning and Technology, Vol. 39, No. 5, pp. 464–483, DOI: 10.1080/03081060.2016.1174364.

    Article  Google Scholar 

  • Ziari, H., Keymanesh, M. R., and Khabiri, M. M. (2007). “Locating stations of public transportation vehicles for improving transit accessibility.” Transport, Vol. 22, No. 2, pp. 99–104.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wang, S., Liu, Z. et al. Network-level Optimization of Bus Stop Placement in Urban Areas. KSCE J Civ Eng 22, 1446–1453 (2018). https://doi.org/10.1007/s12205-017-0075-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-0075-2

Keywords

Navigation