Skip to main content
Log in

Experimental study on sedimentation and consolidation of soil particles in dredged slurry

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Sedimentation and consolidation of dredged slurry is very complex in practice. A new Multilayer Extraction Sampling (MES) method was developed in this study to better understand the underlying law of sedimentation and consolidation of soil particles in slurries. Comparing with previous methods, the advantages of this method include: (1) the equipment is easy to operate and the test procedures are simple; (2) the volume distribution and the settling velocity of soil particles can be measured and calculated by Volume Flux Function (VFF) approach at different time and heights during sedimentation and consolidation process; (3) soil formation from sedimentation of dredged slurry can be also further studied based on pore water pressure measurements in conjunction with the velocity and density distributions. The experimental results revealed that there were four different zones during sedimentation and consolidation process: water zone, hindered settling zone, consolidation zone and a new zone termed as “transition zone” where soil particles are in contact with each other but effective stress are not fully developed. It is concluded that the sedimentation and consolidation of soil particles in dredged slurry was studied successfully in a holistic manner using this new experimental method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexis, A., Le bras, G., and Thomas, P. (2004). “Experimental bench study of settling-consolidation soil formation.” Geotechnical Testing Journal, Vol. 27, No. 6, pp. 557–567, DOI: 10.1520/GTJ11582.

    Google Scholar 

  • Allain, C., Cloitre, M. and Wafra M. (1995). “Aggregation and sedimentation in colloidal suspensions.” Physical Review Letters, Vol. 74, pp. 1478–1481, DOI: 10.1103/PhysRevLett.74.1478.

    Article  Google Scholar 

  • Amy, L. A., Talling, P. J., Edmonds, V. O., Sumner, E. J., and Lesueur, A. (2006). “An experimental investigation of sand–mud suspension settling behaviour: Implications for bimodal mud contents of submarine flow deposits.” Sedimentology, Vol. 53, pp. 1411–1434, DOI: 10.1111/j.1365-3091.2006.00815.x.

    Article  Google Scholar 

  • Been, K. (1980). Stress strain behavior of a cohesive soil deposited underwater, PhD. Thesis. University of Oxford, Oxford, UK.

    Google Scholar 

  • Been, K. and Sills, G. C. (1981). “Self-weight consolidation of soft soils: An experimental and theoretical study.” Geotechnique, Vol. 31, No. 4, pp. 519–535, DOI: 10.1680/geot.1981.31.4.519.

    Article  Google Scholar 

  • Berlamont, J., Ockenden, M., Toorman, E., and Winterwerp, J. (1993). “The characterization of cohesive sediment properties.” Coastal Engineering, Vol. 21, pp. 105–128, DOI: 10.1016/0378-3839(93)90047-C.

    Article  Google Scholar 

  • Bürger, R. and Karlsen, K. H. (2001). “On some upwind schemes for the phenomenological sedimentation-consolidation model.” Journal of Engineering Mathematics, Vol. 41, pp. 145–166, DOI: 10.1023/A:1011935232049.

    Article  MATH  MathSciNet  Google Scholar 

  • Chu, C. P., Ju, S. P., Lee, D. J., and Mohanty, K. K. (2002). “Batch gravitational sedimentation of slurries.” Journal of Colloid and Interface Science, Vol. 245, No. 2, pp. 178–186, DOI: 10.1006/jcis.2001.7938.

    Article  Google Scholar 

  • Crickmore, M. J., Tazioli, G. S., Appleby, P. G., and Oldfield, F. (1990). The use of nuclear techniques in sediment transport and sedimentation problems, Technical Documents in Hydrology, Unesco, Paris.

    Google Scholar 

  • Eckert, W. F., Masliyah, J. H., Gray, M. R., and Fedorak, P. M. (1996). “Prediction of sedimentation and consolidation of fine tails.” AIChE Journal, Vol. 42, pp. 960–972, DOI: 10.1002/aic.690420409.

    Article  Google Scholar 

  • Elder, D. M. (1985). Stress-strain and strength behaviour of very soft soil sediment, University of Oxford, Oxford, UK.

    Google Scholar 

  • Gibson, R. E., England, G. L., and Hussy, M. J. L. (1967). “The theory of one-dimensional consolidation of saturated clays.” Geotechnique, Vol. 17, No. 3, pp. 261–273, DOI: 10.1680/geot.1967.17.3.261.

    Article  Google Scholar 

  • Gibson, R. E., Schiffman, R. L., and Cargill, K. W. (1981). “The theory of one-dimensional consolidation of saturated clays II Finite nonlinear consolidation of thick homogeneous layers.” Canadian Geotechnical Journal, Vol. 18, No. 2, pp. 280–293, DOI: 10.1139/t81-030.

    Article  Google Scholar 

  • He, H. T. (2010). The experimental study on the process of transformation from sediments to soil, Master. Thesis. Hohai University, Nanjing, China.

    Google Scholar 

  • He, H. T., Zhu, W, Zhang C. L., and Wang, L. (2011). “Multilayer extraction sampling method in the application research in the process of sedimentation.” Rock and Soil Mechanics, Vol. 32, No. 8, pp. 2371–2378, DOI: 1000-7598(2011)08-2371-08.

    Google Scholar 

  • Imai, G. (1980). “Settling behavior of clay suspension.” Soils and Foundations, Vol. 20, No. 2, pp. 61–77.

    Article  MathSciNet  Google Scholar 

  • Imai, G. (1981). “Experimental studies on sedimentation mechanism and sediment formation of clay materials.” Soils and Foundations, Vol. 21, No. 1, pp. 7–20.

    Article  MathSciNet  Google Scholar 

  • Jeeravipoolvarn, S., Chalaturnyk, R. J., and Scott, J. D. (2009). “Sedimentation–consolidation modeling with an interaction coefficient.” Computers and Geotechnics, Vol. 36, No. 5, pp. 751–761, DOI: 10.1016/j.compgeo.2008.12.007.

    Article  Google Scholar 

  • Kynch, G. J. (1952). “A theory of sedimentation.” Transactions of the Faraday Society, Vol. 48, pp. 166–176, DOI: 10.1039/TF9524800166.

    Article  Google Scholar 

  • Liu, Y., Xiao, S. F., and Wang, Q. (2004). “Research on indoor scaledown test of dredger fill.” Rock and Soil Mechanics, Vol. 25, No. 4, pp. 518–521, DOI: 1000-7598-(2004)04-0518-05.

    Google Scholar 

  • McRoberts, E. C. and Nixon, J. F. (1976). “A theory of soil sedimentation.” Canadian Geotechnical Journal, Vol. 13, No. 3, pp. 294–310, DOI: 10.1139/t76-031.

    Article  Google Scholar 

  • Merckelbach, L. M. (2000). Consolidation and strength evolution of soft mud layers, Delft University of Technology, Delft, Netherland.

    Google Scholar 

  • Merckelbach, L. M. and Kranenburg, C. (2004). “Determining effective stress and permeability equations for soft mud from simple laboratory experiments.” Geotechnique, Vol. 54, No. 9, pp. 581–591, DOI: 10.1680/geot.2004.54.9.581.

    Article  Google Scholar 

  • Michaels, A. S. and Bolger, J. C. (1962). “Settling rates and sediment volumes of flocculated kaolin suspensions.” Industrial & Engineering Chemistry Fundamentals, Vol. 1, No. 1, pp. 24–33, DOI: 10.1021/i160001a004.

    Article  Google Scholar 

  • Mitchell, J. K. (1976). Fundamentals of Soil Behavior, John Wiley and Sons, New York, N.Y.

    Google Scholar 

  • Monte, J. L. and Krizek, R. J. (1976). “One-dimensional mathematical model for large-strain consolidation.” Geotechnique, Vol. 26, No. 3, pp. 495–510, DOI: 10.1680/geot.1976.26.3.495.

    Article  Google Scholar 

  • Pane, V. (1985). Sedimentation and consolidation of clays, Ph.D. Dissertation, Department of Civil Engineering, University of Colorado, Boulder, Colorado.

    Google Scholar 

  • Pane, V. and Schiffman, R. L. (1985). “A note on sedimentation and consolidation.” Geotechnique, Vol. 35, No. 1, pp. 69–72, DOI: 10.1680/geot.1985.35.1.69.

    Article  Google Scholar 

  • Richardson, J. F. and Zaki, W. N. (1954). “Sedimentation and fluidization: Part I.” Transactions of the Institution of Chemical Engineers, Vol. 32, pp. 35–53.

    Google Scholar 

  • Shodja, H. M. and Feldkamp, J. R. (1993). “Numerical analysis of sedimentation and consolidation by the moving finite element method.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 17, pp. 753–769, DOI: 10.1002/nag.1610171102.

  • Sills, G. C. and Elder, D. McG. (1986). “The transition from sediment suspension to settling bed.” A.J. Mehta (Ed.), Estuarine Cohesive Sediment Dynamics, Springer-Verlag, New York, pp. 192–205, DOI: 10.1029/LN014p0192.

    Chapter  Google Scholar 

  • Stokes, G. G. (1851). “On the effect of the internet friction of fluids on the motion of pendulums.” Transactions of the Cambridge Philosophical Society, Vol. 9, No. 2, pp. 89–106, DOI: 10.1017/CBO9780511702266.002.

    Google Scholar 

  • Tan, T. S., Yong, K. Y., Leong, E. C., and Lee, S. L. (1990). “Sedimentation of clayed slurry.” Journal of Geotechnical Engineering, ASCE, Vol. 116, No. 6, pp. 885–898, DOI: 10.1061/(ASCE)0733-9410(1990) 116:6(885).

    Article  Google Scholar 

  • Toorman, E. A. (1996). “Sedimentation and self-weight consolidation: General, unifying theory.” Geotechnique, Vol. 46, No. 1, pp. 103–113, DOI: 10.1680/geot.1996.46.1.103.

    Article  Google Scholar 

  • Wang, B. T., Guo, S. J., and Zhang, F. H. (2013). “Research on deposition and consolidation behaviour of cohesive sediment with settlement column experiment.” European Journal of Environmental and Civil Engineering, Vol. 17, No. S1, pp. 144–157, DOI: 10.1080/19648189. 2013.834591.

    Article  Google Scholar 

  • Xu, G. Z., Gao, Y. F., Hong, Z. S., and Ding, J. W. (2012). “Sedimentation behavior of four dredged slurries in China.” Marine Georesources & Geotechnology, Vol. 30, No. 2, pp. 143–156, DOI: 10.1080/1064119X. 2011.602382.

    Article  Google Scholar 

  • Zhang, N., Zhu, W., Wang, L., Lv, Y. Y., and Zhou, X. Z. (2013). “Study of sedimentation and consolidation of soil particles in dredged slurry.” Rock and Soil Mechanics, Vol. 34, No. 6, pp. 1681–1686, DOI: 1000-7598-(2013)06-1681-06.

    Google Scholar 

  • Znidarcic, D., Schiffman, R. L., Pane, V., Croce, P., Ko, H. Y., and Olsen, H. W. (1986). “The theory of one-dimensional consolidation of saturated clays: Part V. Constant rate of deformation testing and analysis.” Geotechnique, Vol. 36, No. 2, pp. 227–237.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Zhu, W., He, H. et al. Experimental study on sedimentation and consolidation of soil particles in dredged slurry. KSCE J Civ Eng 21, 2596–2606 (2017). https://doi.org/10.1007/s12205-017-0068-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-0068-1

Keywords

Navigation