Skip to main content
Log in

Enhancement of volatile fatty acids removal by a co-culture of microalgae and activated sludge

  • Environmental Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The synergistic effects of a co-culture of Chlorella vulgaris (C. vulgaris) and activated sludge in Volatile Fatty Acids (VFAs) treatment were examined by constructing and comparing the performance of the three reactors (only algae, only activated sludge, coculture). As a result, the addition of the activated sludge stimulated the growth of C. vulgaris up to 2.6-fold, even though the initial algae concentration in the co-culture was only 30% of that in the only algae reactor. The treatment efficiency, which was indicated by the degradation of both the VFAs and nutrients, increased due to the symbiotic relationship of the co-culture of C. vulgaris and activated sludge. For the co-culture of algae and activated sludge, the propionate removal rate was enhanced by approximately 29.5- fold and 2.2-fold, respectively, compared to only algae and only sludge; the butyrate removal rate was also enhanced 6-fold and 1.5- fold, respectively. Both the NH4 +–N and PO4 3––P removal rate of the reactor with the co-culture was approximately 2 times higher than that of the reactor with the only algae and only sludge. Within 88 h, the removal efficiency of the co-culture reactor reached 98.2%, whereas the removal efficiency was 59.3% and 49.8% for only algae and only sludge reactor, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA-AWA-WEF (2005). Standard methods for the examination of water and wastewater, 21st ed, Washington: American Public Health Association.

    Google Scholar 

  • Borde, X., Guieysse, B., Delgado, O., Muñoz, R., Hatti-Kaul, R., Nugier-Chauvin, C., Patin, H., and Mattiasson, B. (2003). “Synergistic relationships in algal-bacterial microcosms for the treatment of aromatic pollutants.” Bioresource Technology, Vol. 86, No. 3, pp. 293–300, DOI: 10.1016/S0960-8524(02)00074-3.

    Article  Google Scholar 

  • Brennan, L. and Owende, P. (2010). “Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products.” Renewable and Sustainable Energy Reviews, Vol. 14, No. 2, pp. 557–577, DOI: 10.1016/j.rser.2009. 10.009.

    Article  Google Scholar 

  • Chavan, A. and Mukherji, S. (2008). “Treatment of hydrocarbon-rich wastewater using oil degrading bacteria and phototrophic microorganisms in rotating biological contactor: Effect of N:P ratio.” Journal of Hazardous Materials, Vol. 154, Nos. 1-3, pp. 63–72, DOI: 10.1016/j.jhazmat.2007.09.106.

    Article  Google Scholar 

  • Cho, H. U., Kim, Y. M., Choi, Y. N., Xua, X., Shin, D. Y., and Park, J. M. (2015). “Effects of pH control and concentration on microbial oil production from Chlorella vulgaris cultivated in the effluent of a low-cost organic waste fermentation system producing volatile fatty acids.” Bioresource Technology, Vol. 184, pp. 245–250, DOI: 10.1016/j.biortech.2014.09.069.

    Article  Google Scholar 

  • Chojnacka, K. and Noworyta, A. (2004). “Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures.” Enzyme and Microbial Technology, Vol. 34, No. 5, pp. 461–465, DOI: 10.1016/j.enzmictec.2003.12.002.

    Article  Google Scholar 

  • Comeau, Y., Rabinowitz, B., Hall, K. J., and Oldham, W. K. (1987). “Phosphorus release and uptake in enhanced biological phosphorus removal from wastewaters.” Journal of Water Pollution Control Federation, Vol. 59, No. 7, pp. 707–715.

    Google Scholar 

  • de Godos, I., Vargas, V. A., Blanco, S., González, M. C. G., Soto, R., García-Encina, P. A., Becares, E., and Muñoz, R. (2010). “A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation.” Bioresource Technology, Vol. 101, No. 14, pp. 5150–5158, DOI: 10.1016/j.biortech.2010. 02.010.

    Article  Google Scholar 

  • de-Bashan, L. E., Hernandez, J-P., Morey, T., and Bashan, Y. (2004). “Microalgae growth-promoting bacteria as “helpers” for microalgae: A novel approach for removing ammonium and phosphorus from municipal wastewater.” Water Research, Vol. 38, No. 2, pp. 466–474, DOI: 10.1016/j.watres.2003.09.022.

    Article  Google Scholar 

  • de-Bashan, L. E., Moreno, M., Hernandez, J-P., and Bashan, Y. (2002). “Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense.” Water Research, Vol. 36, No. 12, pp. 2941–2948, DOI: 10.1016/S0043-1354(01)00522-X.

    Article  Google Scholar 

  • El-Mashad, H. M., Zeeman, G., van Loon, W. K., Bot, G., and Lettinga, G. (2004). “Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure.” Bioresource Technology, Vol. 95, No. 2, pp. 191–201, DOI: 10.1016/j.biortech.2003.07.013.

    Article  Google Scholar 

  • Essam, T., Rakaiby, M. E., and Hashem, A. (2013). “Photosynthetic based algal-bacterial combined treatment of mixtures of organic pollutants and CO2 mitigation in a continuous photobioreactor.” World Journal of Microbiology and Biotechnology, Vol. 29, No. 6, pp. 969–974, DOI: 10.1007/s11274-013-1254-z.

    Article  Google Scholar 

  • Fagerstone, K. D., Quinn, J. C., Bradeley, T. H., De Long, S. K., and Marchese, A. J. (2011). “Quantitative measurement of direct nitious oxide emmsions from microalgae cultivation.” Environmental Science and Technology, Vol. 45, No. 21, pp. 9449–9456, DOI: 10.1021/es202573f.

    Article  Google Scholar 

  • Fei, Q., Fu, R., Shang, L., Brigham, C. J., and Chang, H. N. (2015). “Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment.” Bioprocess Biosystems Engineering, Vol. 38, No. 4, pp. 691–700, DOI: 10.1007/s00449-014-1308-0.

    Article  Google Scholar 

  • Fukami, K., Nishijima, T., and Ishida, Y. (1997). “Stimulative and inhibitory effects of bacteria on the growth of microalgae.” Hydrobiologia, Vol. 358, No. 1, pp. 185–191, DOI: 10.1023/A:1003139402315.

    Article  Google Scholar 

  • Grady, C. P. L. Jr., Daigger, G. T., and Lim, H. C. (1999). Biological Wastewater Treatment, 2nd ed, Marcel Dekker Inc., New York, N. Y.

    Google Scholar 

  • Guieysse, B., Borde, X., Muñoz, R., Hatti-Kaul, R., Nugier-Chauvin, C., Patin, H., and Mattiasson, B. (2002). “Influence of the initial composition of algal-bacterial microcosm on the degradation of salicylate in a fed-batch culture.” Biotechnology Letters, Vol. 24, No. 7, pp. 531–538, DOI: 10.1023/A:1014847616212.

    Article  Google Scholar 

  • Kim, S., Lee, Y., and Hwang, S. J. (2013). “Removal of nitrogen and phosphorus by Chlorella sorokiniana cultured heterotrophically in ammonia and nitrate.” International Biodeterioration & Biodegradation, Vol. 85, pp. 511–516, DOI: 10.1016/j.ibiod.2013.05.025.

    Article  Google Scholar 

  • Li, Y., Chen, Y-F., Paul Chen, P., Min, M., Zhou, W., Martinez, B., Zhu, J., and Ruan, R. (2011). “Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production.” Bioresource Technology. Vol. 102, No. 8, pp. 5138–5144, DOI: 10.1016/j.biortech.2011.01. 091.

    Article  Google Scholar 

  • Lin, L., Chan, G. Y. S., Jiang, B. L., and Lan, C. Y. (2007). “Use of ammoniacal nitrogen tolerant microalgae in landfill leachate treatment.” Waste Management. Vol. 27, No. 10, pp. 1376–1382, DOI: 10.1016/j.wasman.2006.09.001.

    Article  Google Scholar 

  • Mata, T. M., Martins, A. A., and Caetano, N. S. (2010). “Microalgae for biodiesel production and other applications: A review.” Renewable and Sustainable Energy Reviews, Vol. 14, No. 1, pp. 217–232, DOI: 10.1016/j.rser.2009.07.020.

    Article  Google Scholar 

  • Muñoz, R. and Guieysse, B. (2006). “Algal-bacterial processes for the treatment of hazardous contaminants: A review.” Water Research, Vol. 40, No. 15, pp. 2799–2815, DOI: 10.1016/j.watres.2006.06.011.

    Article  Google Scholar 

  • Oguza, M. T., Robinson, K. G., Layton, A. C., and Saylerb, G. S. (2013). “Volatile fatty acid impacts on nitrite oxidation and carbon dioxide fixation in activated sludge.” Water Research, Vol. 40, No. 4, pp. 665–674, DOI: 10.1016/j.watres.2005.12.010.

    Article  Google Scholar 

  • Oswald, W. J. (1988). “Microalgae and wastewater treatment”. In: Borowitzka MA, Borowitzka LJ, editors. Microalgal Biotechnology. Cambrige: Cambridge University Press, pp. 305–328.

    Google Scholar 

  • Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., and Stanier, R. Y. (1979). “Generic assignments, strain histories and properties of pure cultures of cyanobacteria.” Microbiology, Vol. 111, pp. 1–61, DOI: 10.1099/00221287-111-1-1.

    Article  Google Scholar 

  • Su, Y., Mennerich, A., and Urban, B. (2011). “Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture.” Water Research, Vol. 45, No. 11, pp. 3351–3358, DOI: 10.1016/j.watres.2011.03.046.

    Article  Google Scholar 

  • Su, Y., Mennerich, A., and Urban, B. (2012). “A comparison of nutrient removal capacity and biomass settleability of four high-potential microalgal species.” Bioresource Technololgy, Vol. 124, pp. 157–162, DOI: 10.1016/j.biortech.2012.08.037.

    Article  Google Scholar 

  • Su, Y., Mennerich, A., and Urban, B. (2012). “Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: Influence of algae and sludge inoculation ratios.” Bioresource Technololy, Vol. 105, pp. 67–73, DOI: 10.1016/j.biortech.2011.11.113.

    Article  Google Scholar 

  • Tam, N. F. Y. and Wong, Y. S. (1996). “Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media.” Bioresource Technology, Vol. 57, No. 1, pp. 45–50, DOI: 10.1016/0960-8524(96)00045-4.

    Article  Google Scholar 

  • Tsarpali, V., Kamilari, M., and Dailianis, S. (2012). “Seasonal alterations of landfill leachate composition and toxic potency in semi-arid regions.” Journal of Hazardous Materials, Vol. 233-234, pp. 163–171, DOI: 10.1016/j.jhazmat.2012.07.007.

    Article  Google Scholar 

  • Wang, K., Yin, J., Shen, D., and Li, N. (2014). “Anaerobic digestion of food waste for Volatile Fatty Acids (VFAs) production with different types of inoculum: Effect of pH.” Bioresource Technology, Vol. 161, pp. 395–401, DOI: 10.1016/j.biortech.2014.03.088.

    Article  Google Scholar 

  • Wang, L. K., Ivanov, V., Tay, J-H., and Hun, Y-T., editors (2010). Environmental Biotechnology. Humana Press, New York, N. Y., pp. 250.

    Book  Google Scholar 

  • Wang, L., Li, Y., Chen, P., Min, M., Chen, Y., Zhu, J., and Ruan, R. R. (2010). “Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp.” Bioresource Technology, Vol. 101, No. 8, pp. 2623–2628, DOI: 10.1016/j.biortech. 2009.10.062.

    Article  Google Scholar 

  • Wolfaardt, G. M., Lawrence, J. R., Robarts, R. D., and Caldwell, D. E. (1994). “The role of interactions, sessile growth, and nutrient amendments on the degradative efficiency of amicrobial consortium.” Canadian Journal of Microbiology, Vol. 40, No. 5, pp. 331–340, DOI: 10.1139/m94-055.

    Article  Google Scholar 

  • Zhao, X., Zhou, Y., Huang, S., Qiu, D., Schideman, L., Chai, X., and Zhao, Y. (2012). “Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production.” Bioresource Technology, Vol. 156, pp. 322–328, DOI: 10.1016/j.biortech.2013.12.112.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Jin Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, T.H., Zhang, S., Cho, M.H. et al. Enhancement of volatile fatty acids removal by a co-culture of microalgae and activated sludge. KSCE J Civ Eng 21, 2106–2112 (2017). https://doi.org/10.1007/s12205-016-1271-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-016-1271-1

Keywords

Navigation