Skip to main content
Log in

Aerodynamic stability parameters optimization and global sensitivity analysis for a cable stayed Bridge

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Cable stayed Bridges are highly vulnerable to strong wind load induced vibrations which are responsible of generating aerodynamic instability and in a critical situation lead to structural failure. This paper focuses on buffeting response and flutter instability in a cable stayed Bridge. A strong fluctuating wind is assigned to a cable stayed Bridge model in ABAQUS FE program to onset optimization and global sensitivity analysis through considering three aerodynamic parameters (wind attack angle, deck streamlined length and stay cables viscous damping) by targeting the vertical and torsional vibrations of the deck. The numerical simulations results in conjunction with the frequency analysis results emphasized the existence of such vibrations. Model validation performed by comparing the results of lift and moment coefficients between the present FE model and two benchmarks from the literature (flat plate theory and flat plate by Xavier et al., 2015), which resulted in good agreements between them. Optimum values of the adopted aerodynamic parameters have been identified and discussed. Global sensitivity analysis based on Monte Carlo sampling method was utilized to formulate the surrogate models and the sensitivity indices so that to identify rational effect and role of each parameter on the aerodynamic stability of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Aziz, A. and Attia, W. A. (2015). “Aeroelastic investigation of different deck sections for suspension bridges by numerical analysis.” International Journal of Engineering and Innovative Technology (IJEIT), Vol. 4, No. 12, pp. 49–57, DOI: http://www.ijeit.com/Vol%204/Issue%2012/IJEIT1412201506_09.pdf.

    Google Scholar 

  • Agar, T. J. A. (1989). “Aerodynamic flutter analysis of suspension bridges by a modal technique.” Engrg. Struct., Vol. 11, No. 2, pp. 75–82, DOI: 10.1016/0141-0296(89)90016-3.

    Article  Google Scholar 

  • Al-Assaf A. (2006). Flutter analysis of open-truss stiffened suspension bridges using synthesized aerodynamic derivatives, PhD Thesis, Washington State University,D epartment of Civil and Environmental Engineering, Washington, USA.

    Google Scholar 

  • Amiri, F., Anitescu, C., Arroyo, M., Bordas, S., and Rabczuk, T. (2014). “XLME interpolants, a seamless bridge between XFEM and enriched meshless methods.” Computational Mechanics, Vol. 53, No. 1, pp. 45–57, DOI: 10.1007/s00466-013-0891-2.

    Article  MathSciNet  MATH  Google Scholar 

  • Amiri, F., Milan, D., Shen, Y., Rabczuk, T., and Arroyo, M. (2014). “Phase-field modeling of fracture in linear thin shells.” Theoretical and Applied Fracture Mechanics, Vol. 69, pp. 102–109, DOI: 10.1016/j.tafmec.2013.12.002.

    Article  Google Scholar 

  • Anitescu, C., Jia, Y., Zhang, Y., and Rabczuk, T. (2015). “An isogeometric collocation method using superconvergent points.” Computer Methods in Applied Mechanics and Engineering, Vol. 284, pp. 1073–1097, DOI: 10.1016/j.cma.2014.11.038.

    Article  MathSciNet  Google Scholar 

  • Areias, P. and Rabczuk, T. (2013). “Finite strain fracture of plates and shells with configurational forces and edge rotation.” International Journal for Numerical Methods in Engineering, Vol. 94, No. 12, pp. 1099–1122, DOI: 10.1002/nme.4477.

    Article  MathSciNet  MATH  Google Scholar 

  • Areias, P., Msekh, M. A., and Rabczuk, T. (2016). “Damage and fracture algorithm using the screened Poisson equation and local remeshing.” Engineering Fracture Mechanics, Vol. 158, pp. 116–143, DOI: 10.1016/j.engfracmech.2015.10.042.

    Article  Google Scholar 

  • Areias, P., Rabczuk, T., and Camanho, P. P. (2013). “Initially rigid cohesive laws and fracture based on edge rotations.” Computational Mechanics, Vol. 52, No. 4, pp. 931–947, DOI: 10.1007/s00466-013-0855-6.

    Article  MATH  Google Scholar 

  • Areias, P., Rabczuk, T., and Dias-da-Costa, D. (2013). “Element-wise fracture algorithm based on rotation of edges.” Engineering Fracture Mechanics, Vol. 110, pp. 113–137, DOI: 10.1016/j.engfracmech. 2013.06.006.

    Article  MATH  Google Scholar 

  • Areias, P. M. A., Rabczuk, T., and Camanho, P. P. (2014). “Finite strain fracture of 2D problems with injected anisotropic softening elements.” Theoretical and Applied Fracture Mechanics, Vol. 72, pp. 50–63, DOI: 10.1016/j.tafmec.2014.06.006.

    Article  Google Scholar 

  • Baroni, G. and Tarantola, S. (2014). “A general probabilistic framework for uncertainty and global sensitivity analysis of deterministic models: A hydrological case study.” Environmental Modelling & Software, Vol. 51, pp. 26–34, DOI: 10.1016/j.envsoft.2013.09.022.

    Article  Google Scholar 

  • Bartoli, G., Asdia, P., Febo, S., Pasto, C., and Procino, L. (2008). Innovative solutions for long-span suspension Bridges, BBAA VI International Colloquium on: Bluff Bodies Aerodynamics and Applications. Milano, Italy, 16 pages.

    Google Scholar 

  • Bleich, F. (1948). “Dynamic instability of truss-stiffened suspension bridges under wind action.” Proc. ASCE, Vol. 74, No. 7, pp. 1269–1314.

    Google Scholar 

  • Bordas, S., Rabczuk, T., and Zi, G. (2008). “Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by extrinsic discontinuous enrichment of meshfree methods without asymptotic enrichment.” Engineering Fracture Mechanics, Vol. 75, No. 5, pp. 943–960, DOI: 10092/705.

    Article  Google Scholar 

  • Budarapu, P. R., Gracie, R., Bordas, S. P. A., and Rabczuk, T. (2014). “An adaptive multiscale method for quasi-static crack growth.” Computational Mechanics, Vol. 53, No. 6, pp. 1129–1148, DOI: 10.1007/s00466-013-0952-6.

    Article  MATH  Google Scholar 

  • Budarapu, P. R., Gracie, R., Yang, S. W., Zhaung, X., and Rabczuk, T. (2014). “Efficient coarse graining in multiscale modeling of fracture.” Theoretical and Applied Fracture Mechanics, Vol. 69, pp. 126–143, DOI: 10.1016/j.tafmec.2013.12.004.

    Article  Google Scholar 

  • Budarapu, P. R., Javvaji, B., Sutrakar, V. K., Mahapatra, D. R., Zi, G., and Rabczuk, T. (2015). “Crack propagation in Graphene.” Journal of Applied Physics, Vol. 118, No. 064307, DOI: 10.1063/1.4928316.

  • Budarapu, P. R., Narayana, T. S. S., Rammohan, B., and Rabczuk, T. (2015). “Directionality of sound radiation from rectangular panels.” Applied Acoustics, Vol. 89, pp. 128–140, DOI: 10.1016/j.apacoust.2014.09.006.

    Article  Google Scholar 

  • Budarapu, P. R., SudhirSastry, Y. B., and Natarajan, R. (2016). “Design concepts of an aircraft wing: composite and morphing airfoil with auxetic structures.” Frontiers of Structural and Civil Engineering, accepted for publication.

    Google Scholar 

  • Budarapu, P. R., SudhirSastry, Y. B., Javvaji, B., and Mahapatra, D. R. (2014). “Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium.” Frontiers of Structural and Civil Engineering, Vol. 8, No. 2, pp. 151–159, DOI: 10.1007/s11709-014-0247-9.

    Article  Google Scholar 

  • Cai, Y., Zhu, H., and Zhuang, X. (2014). “A Continuous/discontinuous Deformation Analysis (CDDA) method based on deformable blocks for fracture modelling.” Frontiers of Structural & Civil Engineering, Vol. 7, pp. 369–378, DOI: 10.1007/s11709-013-0222-x.

    Article  Google Scholar 

  • Chau-Dinh, T., Zi, G., Lee, P. S., Rabczuk, T., and Song, J. H. (2012). “Phantom-node method for shell models with arbitrary cracks.” Computers & Structures, Vol. 92-93, pp. 242–256, DOI: 10.1016/j.compstruc.2011.10.021.

    Article  Google Scholar 

  • Che-Sheng, Z., Xiao-Mong, S., Jun, X., and Charles, T. (2013). “An efficient integrated approach for global sensitivity analysis of hydrological model parameters.” Environmental Modelling & Software, Vol. 41, pp. 39–52, DOI: 10.1016/j.envsoft.2012.10.009.

    Article  Google Scholar 

  • Chen Suren (2004). Dynamic performance of bridges and vehicles under strong wind, PhD Thesis, Department of Civil and Environmental Engineering, Louisiana State University, Louisiana, USA.

    Google Scholar 

  • Chen, X. (2006). “Analysis of long span bridge response to winds: building nexus between flutter and buffeting.” Journal of Structural Engineering, Vol. 132, No. 12, pp. 2006–2017, DOI: 10.1061/(ASCE)0733-9445(2006)132:12(2006).

    Article  Google Scholar 

  • Chen, X. (2012). “Prediction of buffeting response of long span bridges to transient non stationary winds.” The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7), Shanghai, China.

    Google Scholar 

  • Chen, X., Kareema, A., and Matsumoto, M. (2001). “Multimode coupled flutter and buffeting analysis of long span bridges.” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 89, pp. 649–664, DOI: 10.1016/S0167-6105(01)00064-2.

    Article  Google Scholar 

  • Chen, Z. Q., Han, Y., Hua, X. G., and Luo, Y. Z. (2009). “Investigation on influence factors of buffeting response of bridges and its aeroelastic model verification for Xiaoguan Bridge.” Engineering Structures, Vol. 31, No. 2, pp. 417–431, DOI: 10.1016/j.engstruct. 2008.08.016.

    Article  Google Scholar 

  • Chen, S. R., Cai, C. S., Chang, C. C., and Gu, M. (2004). “Modal coupling assessment and approximated prediction of coupled multimode wind vibration of long-span bridges.” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 92, pp. 393–412, DOI: 10.1016/j.jweia.2004.01.004.

    Article  Google Scholar 

  • Chen, X., Matsumoto, M., and Kareem, A. (2000). “Aerodynamic coupling effects on flutter and buffeting of bridges.” J. of Engineering Mechanics, ASCE, Vol. 126, No. 1, pp. 17–26, DOI: 10.1061/(ASCE) 0733-9399(2000)126:1(17).

    Article  Google Scholar 

  • Chowdhury, A. G. (2004). Identification of frequency domain and time domain aeroelastic parameters for flutter analysis of flexible structures, PhD Thesis, Iowa State University, Department of Aerospace Engineering, Iowa, USA.

    Google Scholar 

  • Chunhua, L. and Haifan, X. (2000). “Simulation of buffeting response history for long span bridges.” 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability, Notre Dame, Indiana.

    Google Scholar 

  • Confalonieri, R., Bregaglio, S., and Acutis, M. (2010). “A proposal of an indicator for quantifying model robustness based on the relationship between variability of errors and of explored conditions.” Ecological Modelling, Vol. 221, pp. 960–964, DOI: 10.1016/j.ecolmodel.2009. 12.003.

    Article  Google Scholar 

  • Dahl, K. (2013). Aeroelastic behavior of very long span suspension bridges, MSc thesis, University of Stavanger, Department of Structural Engineering and Materials Science, Stavanger, Norway.

    Google Scholar 

  • Davenport, A. G. (1962). “Buffeting of a suspension bridge by storm winds.” Journal of the Structural Division, ASCE, Vol. 88, No. 3, pp. 233–270, DOI: http://cedb.asce.org/CEDBsearch/record.jsp?dockey =0012826.

    Google Scholar 

  • Diana, G., Bruni, S., Collina, A., and Zasso, A. (1998). “Aerodynamic challenges in super long span bridges design.” Bridge aerodynamics, Larsen and Esdahl, eds., pp. 131–144, DOI: 10.5169/seals-59842.

    Google Scholar 

  • Ding, Q, Lee, P. K. K., and Lo, S. H. (2000). “Time domain buffeting analysis of suspension bridges subjected to turbulent wind with effective attack angle.” Journal of Sound and Vibration, Vol. 233, No. 2, pp. 311–327, DOI: 10.1006/jsvi.1999.2801.

    Article  Google Scholar 

  • Dorian, J. (2010). Aspects of wind buffeting response and non-linear structural analysis for cable stayed Bridges, TDV Consulting GmbH, Dorian Janjic & Partner, Graz, Austria.

    Google Scholar 

  • Fransos, D. (2008). Stochastic numerical models for wind engineering, PhD thesis. Polytechnic University of Turin, Torino, Italy.

    Google Scholar 

  • Ge, Y. J. and Xiang, H. F. (2009). “Aerodynamic stabilization for boxgirder suspension bridges with super-long span. EACWE 5.” Florence, Italy.

    Google Scholar 

  • Ghorashi, S., Valizadeh, N., Mohammadi, S., and Rabczuk, T. (2015). “T-spline based XIGA for fracture analysis of orthotropic media.” Computers & Structures, Vol. 147, pp. 138–146, DOI: 10.1016/j.compstruc.2014.09.017.

    Article  Google Scholar 

  • Glen, G. and Isaacs, K. (2012). “Estimating Sobol sensitivity indices using correlations.” Journal of Environmental Modelling and Software, Vol. 37, pp. 157–166, DOI: 10.1016/j.envsoft.2012.03.014.

    Article  Google Scholar 

  • Haan, F. L. (2000). The effects of turbulence on the aerodynamics of long span bridges, PhD Thesis, University of Notre Dame, Department of Aerospace and Mechanical Engineering, Notre Dame, Indiana.

    Google Scholar 

  • Hao, W., Aiqun, L., Gengwen, Z., and Jian, L. (2010). “Non-linear buffeting response analysis of long-span suspension bridges with central buckle.” Earthquake Engineering and Engineering Vibration, Vol. 9, No. 2, pp. 259–270, DOI: 10.1007/s11803-010-0011-7.

    Article  Google Scholar 

  • Hernández, S., Nieto, F., Jurado, J. A., and Pérez, I. (2012). “Bluff body aerodynamics of simplified bridge decks for aeroelastic optimization.” The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7), Shanghai, China.

    Google Scholar 

  • Hollerud Odden, T. and Skyvulstad, H. (2012). Wind-induced Dynamic Response and Aeroelastic Stability of a Suspension Bridge crossing Sognefjorden, MSc Dissertation, Norwegian University of Science and Technology, Department of Structural Engineering. Trondhiem, Norway.

    Google Scholar 

  • Homma, T. and Saltelli, A. (1996). “Importance measures in global sensitivity analysis of model output.” Reliability Engineering and System Safety, Vol. 52, No. 1, pp. 1–17, DOI: 10.1016/0951-8320 (96)00002-6.

    Article  Google Scholar 

  • Jain, A., Jones, N. P., and Scanlan, R. H. (1996). “Coupled flutter and buffeting analysis of long-span bridges.” Journal of Structural Engineering., ASCE, Vol. 122, No. 7, pp. 716–725, DOI: 10.1061/(ASCE)0733-9445(1996)122:7(716).

    Article  Google Scholar 

  • Janjic, D. (2010). “Aspects of wind buffeting response and non-linear structural analysis for cable stayed bridges.” TDV Consulting GmbH, Dorian Janjic & Partner, Graz, Austria.

    Google Scholar 

  • Katsuchi, H., Jones, N. P., and Scanlan, R. H. (1999). “Multimode coupled flutter and buffeting analysis of the Akashi-Kaikyo Bridge.” Journal of Structural Engineering., ASCE, Vol. 125, No. 1, pp. 60–70, DOI: 10.1061/(ASCE)0733-9445(1999)125:1(60).

    Article  Google Scholar 

  • Keerthana, M., Jaya, K. P., Selvi Rajan, S., Thampi, H., and Sankar, R. R. (2011). “Numerical studies on evaluation of aerodynamic force coefficients of cable-stayed bridge deck.” Journal of wind and Engineering, Vol. 8, No. 2, pp. 19–29, DOI: https://www.researchgate. net/publication/267231443.

    Google Scholar 

  • Keitel, H., Karaki, G., Lahmer, T., Nikulla, S., and Zabel, V. (2011). “Evaluation of coupled partial models in structural engineering using graph theory and sensitivity analysis.” Engineering structures, Vol. 33, No. 12, pp. 3726–3736, DOI: 10.1016/j.engstruct.2011. 08.009.

    Article  Google Scholar 

  • Kvamstad, T. H. (2011). Assessment of the flutter stability limit of the Hålogaland Bridge using a probabilistic approach. MSc thesis, Norwegian University of Science and Technology NTNU, Department of Structural Engineering, Trondheim, Norway.

    Google Scholar 

  • Kwon, S. D. (2010). Uncertainty of bridge flutter velocity measured at wind tunnel tests. Chapel Hill, North Carolina, USA.

    Google Scholar 

  • Lin, Y. K. and Yang, J. N. (1983). “Multi-mode bridge response to wind excitations.” Journal of Engineering Mechanics, ASCE, Vol. 109, No. 2, pp. 586–603, DOI: 10.1061/(ASCE)0733-9399(1983)109:2(586).

    Article  Google Scholar 

  • Liu, M. Y. and Wang, P. H. (2012). “Finite element analysis of cablestayed bridges with appropriate initial shapes under seismic excitations focusing on deck-stay interaction.” Department of Civil Engineering, Chung Yuan Christian University, Jhongli city, Taiwan, Chap. 9, pp. 231–256, DOI: 10.5772/48440.

    Google Scholar 

  • Ma, C. M., Liao, H. l., and Tao, Q. (2010). “Wind tunnel test on the wind-resistant behavior of a long-span cable-stayed bridge during erection.” Joumal of Southwest Jiaotong University, Vol. 18, No. 2, pp. 112–117, DOI: 1005-2429(2010) 02-0112-06.

    Google Scholar 

  • Matsumoto, M. and Chen, X. (1996). “Time domain analytical method of buffeting response for long span bridges.” Proc., 14th Nat. Symp. on Wind. Engrg., Japan Association for Wind Engineering, 515–520 (in Japanese).

    Google Scholar 

  • Matsumoto, M., Chen, X., and Shiraishi, N. (1994). “Buffeting analysis of long span bridge with aerodynamic coupling.” Proc., 13th Nat. Symp. on Wind Engrg., Japan Association for Wind Engineering, 227–232 (in Japanese).

    Google Scholar 

  • Matsumoto, M., Niihara, Y., Kobayashi, Y., Shirato, H., and Hamasaki, H. (1995). “Flutter mechanism and its stabilization of bluff bodies.” Proc., 9th ICWE, New Delhi, India, pp. 827–838.

    Google Scholar 

  • Ming-Hui, H., Yuh-Yi, L., and Ming-Xi, W. (2012). “Flutter and buffeting analysis of bridges subjected to skew wind.” Journal of Applied Science and Engineering, Vol. 15, No. 4, pp. 401–413, DOI: 10.6180%2fjase.2012.15.4.10.

    Google Scholar 

  • Miyata, T. and Yamada, H. (1988). “Coupled flutter estimate of a suspension bridge.” Proc., Int. Colloquium on Bluff Body Aerodyn. And its Appl., Kyoto, pp. 485–492.

    Google Scholar 

  • Mohammadi, M. S. (2013). Wind Loads on Bridges Analysis of a three span bridge based on theoretical methods and Eurocode 1. M.Sc dissertation. Royal Institute of Technology (KTH), Department of Civil and Architectural Engineering, Stockholm, Norway.

    Google Scholar 

  • Nanthakumar, S., Valizadeh, N., Park, H., and Rabczuk, T. (2015). “Shape and topology optimization of nanostructures using a coupled XFEM/Level set method.” Computational Mechanics, Vol. 56, No. 1, pp. 97–112, DOI: 10.1007/s00466-015-1159-9.

    Article  MathSciNet  MATH  Google Scholar 

  • Nelson, S. R. (2011). Experimental investigation of wind effects on longspan slender bridges with stochastic traffic flow, M.Sc thesis. Colorado State University, Department of Civil and Environmental Engineering. Fort Collins, Colorado, USA.

    Google Scholar 

  • Nguyen-Thanh, N., Kiendl, J., Nguyen-Xuan, H., Wuchner, R., Bletzinger, K. U., Bazilevs, Y., and Rabczuk, T. (2011). “Rotation free isogeometric thin shell analysis using PHT-splines.” Computer Methods in Applied Mechanics and Engineering, Vol. 200, No. 47-48, pp. 3410–3424, DOI: 10.1016/j.cma.2011.08.014.

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H., and Bordas, S. (2008). “A smoothed finite element method for shell analysis.” Computer Methods in Applied Mechanics and Engineering, Vol. 198, No. 2, pp. 165–177, DOI: 10.1016/j.cma.2008.05.029.

    Article  MATH  Google Scholar 

  • Nguyen-Thanh, N., Valizadeh, N., Nguyen, M. N., Nguyen-Xuan, H., Zhuang, X., Areias, P., Zi, G., Bazilevs, Y., De Lorenzis, L., and Rabczuk, T. (2015). “An extended isogeometric thin shell analysis based on Kirchho-Love theory.” Computer Methods in Applied Mechanics and Engineering, Vol. 284, pp. 265–291, DOI: 10.1016/j.cma.2014.08.025.

    Article  MathSciNet  Google Scholar 

  • Nguyen-Xuan, H., Rabczuk, T., Bordas, S., and Debongnie, J. F. (2008). “A smoothed finite element method for plate analysis.” Computer Methods in Applied Mechanics and Engineering, Vol. 197, Nos. 13-16, pp. 1184–1203, DOI: 10.1016/j.cma.2007.10.008.

    Article  MATH  Google Scholar 

  • Pfeil, M. S. and Batista, R. C. (1995). “Aerodynamic stability analysis of cable-stayed bridges.” Journal of Structural Engineering, ASCE, Vol. 121, No. 12, pp.1784–1788, DOI: 10.1061/(ASCE)0733-9445 (1995)121:12(1784).

    Article  Google Scholar 

  • Phan-Dao, H., Nguyen-Xuan, H., Thai-Hoang, C., Nguyen-Thoi, T., and Rabczuk, T. (2013). “An edge-based smoothed finite element method for analysis of laminated composite plates.” International Journal of Computational Methods, Vol. 10, No. 1, art. no. 1340005, DOI: 10.1142/S0219876213400057.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk, T., Akkermann, J., and Eibl, J. (2005). “A numerical model for reinforced concrete structures.” International Journal of Solids and Structures, Vol. 42, Nos. 5-6, pp. 1327–1354, DOI: 10.1016/j.ijsolstr.2004.07.019.

    Article  MATH  Google Scholar 

  • Rabczuk, T. and Belytschko, T. (2004). “Cracking particles: A simplified meshfree method for arbitrary evolving cracks.” International Journal for Numerical Methods in Engineering, Vol. 61, No. 13, pp. 2316–2343, DOI: 10.1002/nme.1151.

    Article  MATH  Google Scholar 

  • Rabczuk, T. and Belytschko, T. (2005). “Adaptivity for structured meshfree particle methods in 2D and 3D.” International Journal for Numerical Methods in Engineering, Vol. 63, No. 11, pp. 1559–1582, DOI: 10.1002/nme.1326.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk, T. and Belytschko, T. (2006). ”Application of particle methods to static fracture of reinforced concrete structures.” International Journal of Fracture, Vol. 137, Nos. 1-4, pp.19–49, DOI: 10.1007/s10704-005-3075-z.

    Article  MATH  Google Scholar 

  • Rabczuk, T. and Belytschko, T. (2007). “A three dimensional large deformation meshfree method for arbitrary evolving cracks.” Computer Methods in Applied Mechanics and Engineering, Vol. 196, Nos. 29-30, pp. 2777–2799, DOI: 10.1016/j.cma.2006.06.020.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk, T., Belytschko, T., and Xiao, S. P. (2004). “Stable particle methods based on Lagrangian kernels.” Computer Methods in Applied Mechanics and Engineering, Vol. 193, Nos. 12-14, pp. 1035–1063, DOI: 10.1016/j.cma.2003.12.005.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk, T. and Eibl, J. (2004). “Numerical analysis of prestressed concrete beams using a coupled element free Galerkin finite element method.” International Journal of Solids and Structures, Vol. 41 Nos. 3-4, pp. 1061–1080, DOI: 10.1016/j.ijsolstr.2003.09.040.

    Article  MATH  Google Scholar 

  • Rabczuk, T. and Eibl, J. (2006). “Modeling dynamic failure of concrete with meshfree particle methods.” International Journal of Impact Engineering, Vol. 32, No. 11, pp. 1878–1897, DOI: 10092/139.

    Article  Google Scholar 

  • Rabczuk, T. and Samaniego, E. (2008). “Discontinuous modelling of shear bands using adaptive meshfree methods.” Computer Methods in Applied Mechanics and Engineering, Vol. 197, Nos. 6-8, pp. 641–658, DOI: 10.1016/j.cma.2007.08.027.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk, T. and Zi, G. (2007). “A meshfree method based on the local partition of unity for cohesive cracks.” Computational Mechanics, Vol. 39, No. 6, pp. 743–760, DOI: 10.1007/s00466-006-0067-4.

    Article  MATH  Google Scholar 

  • Rabczuk, T., Areias, P. M. A., and Belytschko, T. (2007). “A simplied meshfree method for shear bands with cohesive surfaces.” International Journal for Numerical Methods in Engineering, Vol. 69, No. 5, pp. 993–1021, DOI: 10.1002/nme.1797.

    Article  MATH  Google Scholar 

  • Rabczuk, T., Areias, P. M. A., and Belytschko, T. (2007). “A meshfree thin shell method for nonlinear dynamic fracture.” International Journal for Numerical Methods in Engineering, Vol. 72, No. 5, pp. 524–548, DOI: 10.1002/nme.2013.

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk, T., Bordas, S., and Zi, G. (2010). ”On three-dimensional modelling of crack growth using partition of unity methods.” Computers & Structures, Vol. 88, Nos. 23-24, pp. 1391–1411, DOI: 10.1016/j.compstruc.2008.08.010.

  • Rabczuk, T., Bordas, S., and Zi, G. (2007). “A three-dimensional meshfree method for continuous multiplecrack initiation, nucleation and propagation in statics and dynamics.” Computational Mechanics, Vol. 40, No. 3, pp. 473–495, DOI: 10.1007/s00466-006-0122-1.

    Article  MATH  Google Scholar 

  • Rabczuk, T., Eibl, J., and Stempniewski, L. (2003). “Simulation of high velocity concrete fragmentation using SPH/MLSPH.” International Journal for Numerical Methods in Engineering, Vol. 56, No. 10, pp. 1421–1444, DOI: 10.1002/nme.617.

    Article  MATH  Google Scholar 

  • Rabczuk, T., Eibl, J., and Stempniewski, L. (2004). “Numerical analysis of high speed concrete fragmentation using a meshfree Lagrangian method.” Engineering Fracture Mechanics, Vol. 71, pp. 547–556, DOI: 10.1016/S0013-7944(03)00032-8.

    Article  Google Scholar 

  • Rabczuk, T., Gracie, R., Song, J. H., and Belytschko, T. (2010). “Immersed particle method for fluid-structure interaction.” International Journal for Numerical Methods in Engineering, Vol. 81, No. 1, pp. 48–71, DOI: 10.1002/nme.2670.

    MathSciNet  MATH  Google Scholar 

  • Rabczuk, T., Samaniego, E., and Belytschko, T. (2007). “Simplied model for predicting impulsive loads on submerged structures to account for fluid-structure interaction.” International Journal of Impact Engineering, Vol. 34, No. 2, pp. 163–177, DOI: 10.1016/j.ijimpeng.2005.08.012.

    Article  Google Scholar 

  • Rabczuk, T., Zi, G., Bordas, S., and Nguyen-Xuan, H. (2010). “A geometrically non-linear three dimensional cohesive crack method for reinforced concrete structures.” Engineering Fracture Mechanics, Vol. 75, No. 16, pp. 4740–4758, DOI: 10.1016/j.engfracmech. 2008.06.019.

    Article  Google Scholar 

  • Rabczuk, T., Zi, G., Bordas, S., and Nguyen-Xuan, H. (2010). “A simple and robust three-dimensional cracking-particle method without enrichment.” Computer Methods in Applied Mechanics and Engineering, Vol. 199, Nos. 37-40, pp. 2437–2455, DOI: 10.1016/j.cma.2010.03.031.

    Article  MATH  Google Scholar 

  • Ricciardelli, F. (2002). “Pressure distribution, aerodynamic forces and dynamic response of box sections.” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 90, No. 10, pp. 1135–1150, DOI: 10.1016/S0167-6105(02)00227-1.

    Article  Google Scholar 

  • Saltelli, A. and Tarantola, S. (2002). “On the relative importance of input factors in mathematical models: Safety assessment for nuclear waste disposal.” Journal of American Statistical Association, Vol. 97, No. 459, pp. 702–709, DOI: http://www.jstor.org/stable/3085706.

    Article  MathSciNet  MATH  Google Scholar 

  • Saltelli, A. and Paola Annoni (2010). “How to avoid a perfunctory sensitivity analysis.” Environmental Modelling and Software, Vol. 25, No. 12, pp. 1508–1517, DOI: 10.1016/j.envsoft.2010.04.012.

    Article  Google Scholar 

  • Saltelli, A. K., Chan, K., and Scott, M. (2000). Sensitivity Analysis, New York, John Wiley & Sons publishers.

    MATH  Google Scholar 

  • Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., and Gatelli, D. (2008). Global Sensitivity Analysis: The Primer, John Wiley & Sons Ltd.

    MATH  Google Scholar 

  • Saltelli Andrea (2004). Global sensitivity analysis: An introduction. European Commission, Joint Research Centre of Ispra, Italy.

    Google Scholar 

  • Sardesai, M. V. and Desai, A. K. (2013). “Investigation in to cablestructure interaction for extra-dosed bridge.” International Journal of Engineering Research and Applications (IJERA), Vol. 3, No. 4, pp. 1424–1429, DOI: 10.1.1.410.5397.

    Google Scholar 

  • Scanlan, R. H. (1977). “Motion of suspended bridge spans under gusty wind.” Journal of the Structural Division, Vol. 103, No. 9, pp. 1867–1883, DOI: http://cedb.asce.org/CEDBsearch/record.jsp?dockey= 0007611.

    Google Scholar 

  • Selvam, R. P., Govindaswamy, S., and Bosch, H. (2001). Aero-elastic analysis of bridge girder section using computer modeling., University of Arkansas, a report for Mack Blackwell Transportation Center, Arkansas, USA.

    Google Scholar 

  • Shuxian, H. (2009). Time domain buffeting analysis of Large Span cable-stayed bridge, M.Sc. thesis. Norwegian University of Porto, Faculty of Engineering, Porto, Portugal.

    Google Scholar 

  • Simiu, E. and Scanlan, R. (1996). Wind effects on structures, John Wiley & Sons, New York, 1996.

    Google Scholar 

  • Soltane, S., Ben Mekki, O., Montassar, S., and Auricchio, F. (2010). “Damping stay cable transverse vibration using shape memory alloys and magneto rheological dampers.” Advances in Geomaterials and Structures, Vol. 9, pp. 135–140, DOI: http://www-2.unipv.it/compmech/publications/2010_9p.pdf.

    Google Scholar 

  • Soon Duck K. (2010). Uncertainty of Bridge flutter velocity measured at wind tunnel tests, The Fifth International Symposium on Computational Wind Engineering (CWE2010), Chapel Hill, North Carolina, USA. 23-27 May 2010.

    Google Scholar 

  • Starossek, U. (1998). “Bridge instability in wind and spatial flutter analysis.” Invited lecture, Proceedings, Korean Society of Civil Engineers Annual Conference, Seoul, Korea, Vol. 1, pp. 9–20, DOI: https://www.tuhh.de/sdb/starossek/Veroeffentlichungen/Dateien/finite% 20element%20bridge%20flutter%20analysis%203.pdf.

    Google Scholar 

  • Stærdahl, J. W., Sørensen Niels, N., and Nielsen, S. R. K. (2008). “Aeroelastic stability of suspension bridges using CFD.” Shell and spatial structures: Structural architecture -towards the future looking to the past. Venice: University Iuav of Venice.

    Google Scholar 

  • SudhirSastry, Y. B., Budarapu, P. R., Krishna, Y., and Devaraj, S. (2014). “Studies on ballistic impact of the composite panels.” Theoretical and Applied Fracture Mechanics, Vol. 72, pp. 2–12, DOI: 10.1016/j.tafmec.2014.07.010.

    Article  Google Scholar 

  • SudhirSastry, Y. B., Budarapu, P. R., Madhavi, N., and Krishna, Y. (2015). “Buckling analysis of thin wall stiffened composite panels.” Computational Materials Science, Vol. 96B, pp. 459–471, DOI: 10.1016/j.commatsci.2014.06.007.

    Article  Google Scholar 

  • Tan Van, V., Ho Yup, L., Nak Hyun, C., Seung-Taek, O., Young-Min, K., and Hak-Eun, L. (2011). “Flutter analysis of bridges through use of state space method.” Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011, Leuven, Belgium.

    Google Scholar 

  • Thai, C. H., Ferreira, A. J. M., Bordas, S., Rabczuk, T., and Nguyen-Xuan, H. (2014). “Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory.” European Journal of Mechanics -A/Solids, Vol. 43, pp.89–108, DOI: 10.1016/j.euromechsol.2013.09.001.

    Article  Google Scholar 

  • Thai, C. H., Nguyen-Xuan, H., Nguyen-Thanh, N., Le, T. H., Nguyen-Thoi, T., and Rabczuk, T. (2012). “Static, free vibration and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach.” International Journal for Numerical Methods in Engineering, Vol. 91, No. 6, pp. 571–603, DOI: 10.1002/nme.4282.

    Article  MathSciNet  MATH  Google Scholar 

  • Thai, H. C., Nguyen-Xuan, H., Bordas, S., Nguyen-Thanh, N., and Rabczuk, T. (2015). “Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory.” Mechanics of Advanced Materials and Structures, Vol. 22, No. 6, pp. 451–469, DOI: 10.1080/15376494.2013.779050.

    Article  Google Scholar 

  • Thiesemanna, L., Bergmann, D., and Starosseka, U. (2003). “Numerical and experimental evaluation of flutter derivatives by means of the forced vibration method.” Proceedings of the 11th ICWE, International Association for Wind Engineering, Kanagawa, Japan, pp. 1571–1578.

    Google Scholar 

  • Tong, C. (2010). “Self–validated variance–based methods for sensitivity analysis of model outputs.” Reliab. Eng. Syst. Safe., Vol. 95, No. 3, pp. 301–309, DOI: 10.1016/j.ress.2009.10.003.

    Article  Google Scholar 

  • Ubertini, F. (2008). Wind effects on bridges: Response, Stability and Control. PhD thesis, University of Pavia, School of Civil Engineering, Pavia, Italy.

    Google Scholar 

  • Valizadeh, N., Bazilevs, Y., Chen, J. S., and Rabczuk, T. (2015). “A coupled iga-meshfree discretization of arbitrary order of accuracy and without global geometry parameterization.” Computer Methods in Applied Mechanics and Engineering, Vol. 293, pp. 20–37, DOI: 10.1016/j.cma.2015.04.002.

    Article  MathSciNet  Google Scholar 

  • Valizadeh, N., Natarajan, S., Gonzalez-Estrada, O. A., Rabczuk, T., Tinh Quoc, B., and Bordas, S. P. A. (2013). “NURBS-based nite element analysis of functionally graded plates: Static bending, vibration, buckling and flutter.” Composite Structures, Vol. 99, pp. 309–326, DOI: 10.1016/j.compstruct.2012.11.008.

    Article  Google Scholar 

  • Van Vu Tan, Lee, H. Y., Chun, N. H., Oh, S. T., Kim, Y. M., and Lee, H. E. (2011). “Flutter analysis of Bridges through use of state space method.” Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011, Leuven, Belgium. 4-6 July 2011.

    Google Scholar 

  • Vu Bac, N., Lahmer, T., Zhuang, X., Nguyen Thoi, T., and Rabczuk, T. (2016). “A software framework for probabilistic sensitivity analysis for computationally expensive models.” Advances in Engineering Software, Vol. 100, pp. 19–31, DOI: 10.1016/j.advengsoft.2016.06.005.

    Article  Google Scholar 

  • Wilde, K. and Fujino, Y. (1998). “Aerodynamic control of bridge deck flutter by active surfaces.” J. Engrg. Mech., ASCE, Vol. 124, No. 7, pp. 718–727, DOI: 10.1061/(ASCE)0733-9399(1998)124:7(718).

    Article  Google Scholar 

  • Xavier. Ortiz, David Rival, and David Wood. (2015). “Forces and moments on flat plates of small aspect ratio with Application to PV wind loads and small wind turbine blades.” Joumal of Energies, Vol. 8, pp. 2438–2453, DOI: 10.3390/en8042438.

    Article  Google Scholar 

  • Xiang, H. F., Ge, Y. J., and Zhu, L. D., etc. (2005). Modern theory and Practice on Bridge Wind Resistance, Beijing: China Communication Press.

    Google Scholar 

  • Xiao, Y. Q., Hu, G., Tu, M. Q., and Zheng, R. Q. (2012). “The influence of turbulence integral scale to buffeting of long-span bridge.” Applied Mechanics and Materials, Vols. 105-107, pp. 9–12, DOI: 10.4028/www.scientific.net/AMM.105-107.9.

    Article  Google Scholar 

  • Xie, X., Xiaozhang, Li, and Yonggang, S. (2014). “Static and dynamic characteristics of a long span cable stayed bridge with cfrp cables.” Materials, Vol. 7, pp. 4854–4877, DOI: 10.3390/ma7064854.

    Article  Google Scholar 

  • Xie, J. and Xiang, H. (1985). “State-space method for 3-D flutter analysis of bridge structures.” Proc., Asia Pacific Symp. on Wind Engrg., India, pp. 269–276.

    Google Scholar 

  • Xu, Y. L., Hu, L., and Kareem, A. (2014). “Conditional simulation of nonstationary fluctuating wind speeds for long-span bridges.” Journal of Engineering Mechanics, Vol. 140, No. 1, pp. 61–73, DOI: 10.1061/(ASCE)EM.1943-7889.0000589.

    Article  Google Scholar 

  • Yang, S. W., Budarapu, P. R., Mahapatra, D. R., Bordas, S., Zi, G., and Rabczuk, T. (2015). ”A meshless adaptive multiscale method for fracture.” Computational Materials Science, Vol. 96B, pp. 382–395, DOI: 10.1016/j.commatsci.2014.08.054.

    Article  Google Scholar 

  • Yao-Jun, G. and Hai-Fan, X. (2008). “Bluff body aerodynamics application in challenging bridge span length.” BBAA VI International Colloquium on Bluff Bodies Aerodynamics and Applications. Milano, Italy.

    Google Scholar 

  • You-Lin, X. (2013). Wind effects on cable supported bridges, John Wiley & Sons Singapore Pte. Ltd.

    Google Scholar 

  • Zhang, Z. Q., Ding, Y. L., and Geng, F. F. (2016). “Investigation of influence factors of wind-induced buffeting response of a six-tower cable-stayed bridge.” Shock and Vibration, Vol. 2016, Article ID6274985, 16 p, DOI: 10.1155/2016/6274985.

    Google Scholar 

  • Zhuang, X., Augarde, C., and Mathisen, K. (2012). “Fracture modelling using meshless methods and level sets in 3D: Framework and modelling.” International Journal for Numerical Methods in Engineering, Vol. 92, pp. 969–998, DOI: 10.1002/nme.4365.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhuang, X., Huang, R., Rabczuk, T., and Liang, C. (2014). “A coupled thermo-hydro-mechanical model of jointed hard rock for compressed air energy storage.” Mathematical Problems in Engineering, Vol. Article ID179169, DOI: 10.1155/2014/179169.

    Google Scholar 

  • Zi, G., Rabczuk, T., and Wall, W. A. (2007). “Extended meshfree methods without branch enrichment for cohesive cracks.” Computational Mechanics Vol. 40, No. 2, pp. 367–382, DOI: 10.1007/s00466-006-0115-0.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazim Abdul Nariman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nariman, N.A. Aerodynamic stability parameters optimization and global sensitivity analysis for a cable stayed Bridge. KSCE J Civ Eng 21, 1866–1881 (2017). https://doi.org/10.1007/s12205-016-0962-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-016-0962-y

Keywords

Navigation