Skip to main content
Log in

Conceptual framework and environmental issue in the freight transport system

  • Sustainable Urban Transportation System
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

There have been fundamental changes in the roles of seaports as key nodes in the urban freight transport system, as maritime traffic grows significantly. To plan and manage the urban freight transport system effectively, it is very important to understand port decisions and interactions. Major stakeholders are shippers, carriers (i.e. ocean carriers, land carriers and port terminal operators) and Port Authorities in the freight transport system. The paper provides a conceptual framework that defines their distinctive roles and relationships in today’s global shipping market place. Then, freight network models to capture the optimal decision making process of the stakeholders are categorized by modeling methodologies and techniques with updated taxonomy. Finally, environmental issues in decision making are discussed due to increasing air pollution caused by freight shipping. A general equation for estimating port emission is proposed and modified equations of the cost functions for the carrier and shipper problems are suggested by considering the environmental cost additionally. The research provides useful insights and guidelines for future modeling directions and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, H., alloy, Q. G. J., Welch, W. A., Miller, J. W., and Cocker, D. R. (2008). “In-use gaseous and particulate matter emissions from a modern ocean going container vessel.” Atmospheric Environment, Vol. 42, No. 21, pp. 5504–5510, DOI: 10.1016/j.atmosenv.2008.02.053.

    Article  Google Scholar 

  • Adamo, F., Andria, G., Cavone, G., Capua, C., Lanzolla, A. M. L., Morello, R., and Spadavecchia, M. (2014). “Estimation of ship emissions in the port of Taranto.” Measurement, Vol. 47, No. 11, pp. 982–988, DOI: 10.1016/j.measurement.2013.09.012.

    Article  Google Scholar 

  • Agrawal, B. B. and Ziliaskopoulos, A. (2006). “Shipper-carrier dynamic freight assignment model using a variational inequality approach” Transportation Research Record, Vol. 1966, No. 8, pp. 60–70, DOI: 10.3141/1966-08.

    Article  Google Scholar 

  • Berechman, J. (2009). “Estimation of the full marginal costs of port related truck traffic.” Evaluation and Program Planning, Vol. 32, No. 4, pp. 390–396, DOI: 10.1016/j.evalprogplan.2009.06.008.

    Article  Google Scholar 

  • Berechman, J. and Tseng, P. H. (2012). “Estimating the environmental costs of port related emissions: The case of Kaohsiung.” Transportation Research Part D, Vol.7, No. 1, pp. 35–38, DOI: 10.1016/j.trd.2011. 09.009.

    Article  Google Scholar 

  • Breitling, U. (2010). Sustainable shipping and port development, 5th Regional EST Forum in ASIA, Bangkok, Thailand.

    Google Scholar 

  • Browning, L. and Bailey, K. (2006). Current methodologies and best practices for preparing port emission inventories, ICF Consulting report to Environmental Protection.

    Google Scholar 

  • Cheng, T. C. E. and Wu, Y. N. (2006). “A multiproduct, multicriterion supply demand network equilibrium.” Operations Research, Vol. 54, No. 3, pp. 544–554, DOI: 10.1287/opre.1060.0284.

    Article  MathSciNet  MATH  Google Scholar 

  • Chipman, J. S. (1987). The new palgrave: A dictionary of economic, Palgrave Macmillan press, New York.

    Google Scholar 

  • Crainic, T. G. (2002). Handbook of transportation science-2nd edition, Kluwer academic publishers, Netherland.

    Google Scholar 

  • Dafermos, S. and Narguney, A. (1987). “Oligopolistic and competitive behavior of spatially separated markets.” Regional Science and Urban Economics, Vol. 17, No. 2, pp. 245–254, DOI: 10.1016/0166-0462(87)90048-2.

    Article  Google Scholar 

  • Dangiola, A. Dawidowski, L. E., Gomez, D. R., and Osses, M. (2010) “On-road traffic emissions in a megacity,” Atmospheric Environment, Vol. 44, No. 4, pp. 483–493, DOI: 10.1016/j.atmosenv.2009.11.004.

    Article  Google Scholar 

  • Devarajan, S. A. (1981). “A note on network equilibrium and noncooperative games.” Transportation Research Part B, Vol. 15, No. 6, pp. 421–426, DOI: 10.1016/0191-2615(81)90026-6.

    Article  MathSciNet  Google Scholar 

  • Endresen, O., Bakke, J., Sorgard, E., Berglen, T. F., and Holmvang, P. (2005). “Improved modeling of ship So2 emissions-a fuel-based approach.” Atmospheric Environment, Vol. 39, No. 20, pp. 3621–3628, DOI: 10.1016/j.atmosenv.2005.02.041.

    Article  Google Scholar 

  • Fernandez, J. E., CeaCh, J., and Soto, A. O. (2003). “A multi-modal supply-demand equilibrium model for predicting intercity freight flows.” Transportation Research Part B, Vol. 37, No. 7, pp. 615–640, DOI: 10.1016/S0191-2615(02)00042-5.

    Article  Google Scholar 

  • Forkenbrock, D. (1999). “External costs of intercity truck freight transportation.” Transportation Research Part A, Vol. 33, Nos. 7-8, pp. 505–526, DOI: 10.1016/S0965-8564(98)00068-8.

    Google Scholar 

  • Fridell, E., Steen, E., and Peterson, K. (2008). “Primary particles in ship emissions.” Atmospheric Environment, Vol. 42, No. 6, pp. 1160–1168, DOI: 10.1016/j.atmosenv.2007.10.042.

    Article  Google Scholar 

  • Friesz, T. L., Gottfried, J. A., and Morlok, E. K. (1986). “A sequential shipper-carrier network model for predicting freight flows.” Transportation Science, Vol. 20, No. 2, pp. 80–91, DOI: 10.1287/trsc.20.2.80.

    Article  Google Scholar 

  • Friesz, T. L., Gottfried, J., and Morlok, E. K. (1981b). Freight network equilibrium model, Transportation Equilibrium and Supply Models Symposium, Montreal, Quebec.

    Google Scholar 

  • Friesz, T. L., Gottfried, J., Brooks, R. E., Zielen, A. J., Tobin, R. L., and Meleski, S. A. (1981a). Northeast regional environmental impact study: Theory, validation and application of a freight network equilibrium model, Report ANL/FS/120, Argonne national laboratory, Argonne, IL.

    Google Scholar 

  • Friesz, T. L., Viton, P. A., and Tobin, R. L. (1985). “Economic and computational aspects of freight network equilibrium models: A synthesis.” Journal of Regional Science, Vol. 25, No. 1, pp. 29–49, DOI: 10.1111/j.1467-9787.1985.tb00292.x.

    Article  Google Scholar 

  • Guelat, J., Florian, M., and Crainic, B. C. (1990). “A multimode multiproduct network assignment model for strategic planning of freight flows.” Transportation Science, Vol. 24, No. 1, pp. 25–49, DOI: org/10.1287/trsc.24.1.25.

    Article  MATH  Google Scholar 

  • Harker, P. T. (1981). A simultaneous freight network equilibrium model with application to the network design Problem, A Thesis, University of Pennsylvania.

    Google Scholar 

  • Harker, P. T. (1983). Prediction of intercity freight flows: Theory and application of a generalized spatial price equilibrium model, A Thesis, University of Pennsylvania.

    Google Scholar 

  • Harker, P. T. (1985). “The state of the art in the predictive analysis of freight transport systems.” Transportation Reviews, Vol. 5, No. 2, pp. 143–164, DOI: 10.1080/01441648508716591.

    Article  Google Scholar 

  • Harker, P. T. (1988). “Multiple equilibrium behaviors on network” Transportation Science, Vol. 22, No. 1, pp. 39–46, DOI: org/10.1287/trsc.22.1.39.

    Article  MathSciNet  MATH  Google Scholar 

  • Harker, P. T. and Freisz, T. L. (1985a). “Prediction of intercity freight flows: Theory.” Transportation Research Part B, Vol. 20, No. 2, pp. 139–153, DOI: 10.1016/0307-904X(94)00024-Z.

    Article  MathSciNet  Google Scholar 

  • Harker, P. T. and Friesz, T. L. (1985b). “Prediction of intercity freight flows: mathematical formulations.” Transportation Research Part B, Vol. 20, No. 2, pp. 155–174, DOI: 10.1007/s12205-014-1337-x.

    Article  MathSciNet  Google Scholar 

  • Harker, P. T. and Friesz, T. L. (1985c). “The use of equilibrium network models in logistics management: With application to the U.S. coal industry.” Transportation Research Part B, Vol. 18, No. 5, pp. 457–470, DOI: 10.1016/0191-2615(85)90058-X.

    Article  Google Scholar 

  • Haurie, A. and Marcotte, P. (1985). “On the relationship between Nash-Cournot and Wardrop Equilibria.” Networks, Vol. 14, No. 3, pp. 295–308, DOI: 10.1002/net.3230150303.

    Article  MathSciNet  MATH  Google Scholar 

  • Hurley, W. J. and Petersen, E. R. (1994). “Nonlinear tariffs and freight network equilibrium.” Transportation Science, Vol. 28, No. 3, pp. 236–245, DOI: org/10.1287/trsc.28.3.236.

    Article  MATH  Google Scholar 

  • Jiang, L. and Kronbak, J. (2012). The model of maritime External costs, Projcet no. 2010-56, Work Package 1, Report no. 06, University of Southern Denmark, DOI: http://dx.doi.org/10.7364%2Fcscu.2012.6.39.

    Google Scholar 

  • Joseph, J, Patil, R. S., and Gupta, S. K. (2009). “Estimation of air pollutant emission loads from construction and operational activities of a port and harbor in Mumbai, India.” Environ Monit Assess, Vol. 159, Nos. 1-4, pp. 85–98, DOI: 10.1007/s10661-008-0614-x.

    Article  Google Scholar 

  • Kim, D. and Lee. J. (2011) “Application of neural network model to vehicle emissions.” International Journal of Urban Sciences, Vol. 14, No. 3, pp. 264–275, DOI: 10.1080/12265934.2010.9693684.

    Article  Google Scholar 

  • Kresge, D. T. and Roberts, P. O. (1971). Systems analysis and simulation models-Vol. 2 of techniques of transport planning II, The Brookings Institute, Washington, DC.

    Google Scholar 

  • Kuroda, K., Takebayashi, M., and Tsuji, T. (2005). “International container transport network analysis considering port-panamaxclass container ships.” Transportation Economics, Vol. 13, No. 1, pp. 369–391, DOI: 10.1016/S0739-8859(05)13016-9.

    Article  Google Scholar 

  • Langen, P. W. and Pallis, A. A. (2005). Analysis of the benefits of Intraport competition, Available at http://129.3.20.41/eps/io/papers/0510/0510003.pdf.

    Google Scholar 

  • Lee, H. S. (2011). Modeling Stakeholder Interactions in an International Freight Transport System, A Thesis, Rutgers University.

    Google Scholar 

  • Lee, H. S., Boile, M., and Theofanis, S. (2014a). “Modeling carrier interactions in an international freight transportation system.” Journal of Information Systems and Supply Chain Management, Vol. 7, No. 1, pp. 15–39, DOI: 10.4018/ijisscm.2014010102.

    Article  Google Scholar 

  • Lee, H. S., Boile, M., Theofanis, S., and Choo, S. (2014b). “Game theoretical models of the cooperative carrier behavior.” KSCE Journal of Civil Engineering, Vol. 18, No. 5, pp. 1528–1538, DOI: 10.1007/s12205-014-0337-1.

    Article  Google Scholar 

  • Lee, H. S., Boile, M., Theofanis, S., Choo, S., and Lee, K. (2014d). “A freight network planning model in oligopolistic shipping markets.” Cluster Computing, Vol. 17, No. 3, pp.835–847, DOI: 10.1007/s10586-013-0314-3.

    Article  Google Scholar 

  • Lee, H. S., Song, Y., Choo, S., Chung, K., and Lee, K. (2014c). “Bilevel optimization programming for the shipper-carrier network problem.” Cluster Computing, Vol. 17, No. 3, pp. 805–816, DOI: 10.1007/s10586-013-0311-6.

    Article  Google Scholar 

  • Matthias, V., Bewersdorff, I., Aulinger, A., and Quante, M. (2010). “The contribution of ship emission to air pollution in the North Sea regions.” Environmental Pollution, Vol. 158, No. 6, pp. 2241–2250, DOI: 10.1016/j.envpol.2010.02.013.

    Article  Google Scholar 

  • Medhin, N. G. and Wan, W. (2010). “Leader-follower games in marketing: A differential game approach.” International Journal of Mathematics in Operational Research, Vol. 2, No. 2, pp. 151–177, DOI: 10.1504/IJMOR.2010.030815.

    Article  MathSciNet  MATH  Google Scholar 

  • Miller, T. C., Tobin, R. L., and Friesz, T. L. (1991). “Stackelberg games on a network with Cournot-Nash oligopolistic competitors.” Journal of Regional Science, Vol. 31, No. 4, pp. 435–454, DOI: 10.1111/j.1467-9787.1991.tb00159.x.

    Article  Google Scholar 

  • Min, H. and Guo, Z. (2010). “Developing bi-level equilibrium models for the global container transportation network from the perspectives of multiple stakeholders.” International journal of Logistics Systems and Management, Vol. 6, No. 4, pp. 362–379, DOI: 10.1504/IJLSM.2010.032942.

    Article  Google Scholar 

  • Samuelson, P. A. (1952). “Spatial price equilibrium and linear programming.” American Economic Reviews, Vol. 42, No. 3, pp. 283–303, DOI: 10.1016/j.tre.2015.04.001.

    Google Scholar 

  • Saracoglu, H., Deniz, C., and Kilic, A. (2013). “An investigation on the effects of ship sourced emissions in Izmir Port, Turkey.” The scientific World Journal, Vol. 2013, No. 218324, DOI: 10.1155/2013/218324.

    Google Scholar 

  • Schrooten, L. Vlieger, I. D., Panis, L. I., Styns, K., and Torfs, R. (2008). “Inventory and forecasting of maritime emission in the Belgian sea territory, and activity-based emission mode.” Atmospheric Environment, Vol. 42, No. 4, pp. 667–676, DOI: 10.1016/j.atmosenv.2007.09.071.

    Article  Google Scholar 

  • Shukla, A. and Alam, M (2011). “Assessment of real world on-road vehicle emissions under dynamic urban traffic conditions in delhi.” International Journal of Urban Sciences, Vol. 14, No. 2, pp. 207–220, DOI: 10.1080/12265934.2010.9693677.

    Article  Google Scholar 

  • Statista (2015). “International seaborne trade carried by container ships” Available at http://www.statista.com/statistics/253987/internationalseaborne-trade-carried-by-containers.

  • Takayama, T. and Judge, G. G. (1964). “Equilibrium among spatial separated markets: A reformulation.” Econometrica, Vol. 32, No. 4, pp. 510–524, DOI: 10.2307/1910175.

    Article  MathSciNet  Google Scholar 

  • Taznnatos, E. (2010). “Ship emissions and their externalities for the port of Piraeus-Greece.” Atmospheric Environment, Vol. 44, No. 3, pp. 400–407, DOI: 10.1016/j.atmosenv.2009.10.024.

    Article  Google Scholar 

  • Tirole, J. (1988). The theory of industrial organization, Cambridge MIT press, Massachusetts.

    Google Scholar 

  • USEPA (2006). Current methodologies and best practices in preparing port emission inventories, A Report, United States Environmental Protection Agency.

    Google Scholar 

  • Valsaraj, V. (2008). Stochastic and dynamic network design in freight transportation network, A Thesis, The University of Texas at Austin.

    Google Scholar 

  • Vilalba, G. Demisse, E., and Gemechu, D. (2011). “Estimating GHG emissions of marine ports-the case of Barcelona.” Energy Policy, Vol. 39, No. 3, pp. 1363–1368, DOI: 10.1016/j.enpol.2010.12.008.

    Article  Google Scholar 

  • Wang, F., Bao, H., and Kiernama, T. (2009). “Emission inventory assessment for a container vessel.” Sustainable Systems and Technology, ISSST '09. IEEE International Symposium, pp. 1–6, DOI: 10.1109/ISSST.2009.5156740.

    Google Scholar 

  • Wang, Y. A. (2001). Bi-level programming approach for the shippercarrier network problem, A Thesis, New Jersey Institute of Technology.

    Google Scholar 

  • Wang, Y., Hayashi, Y., Kato, H., and Liu, C. (2011). “Decomposition analysis of CO2 emissions increase from the passenger transport sector in Shanghai, China.” International Journal of Urban Sciences, Vol. 15, No. 2. pp. 121–136, DOI: 10.1080/12265934.2011.615983.

    Article  Google Scholar 

  • Xiao, F. and Yang, H. (2007). “Three-player game-theoretic model over a freight transport network.” Transportation Research Part C, Vol. 15, No. 4, pp. 209–217, DOI: 10.1016/j.trc.2006.08.005.

    Article  Google Scholar 

  • Xu, N. and Holguin-Veras, J. A. (2009). Dynamic model of integrated production-transportation operations, Transportation Research Board 2009 Annual Meeting, Washington D.C.

    Google Scholar 

  • Yang, D. Q., Kwan, S. H., Lu, T., Fu, Q. Y., Cheng, J. M., Streets, D. G., Wu, Y. M., and Li, J. J. (2007). “An emission inventory of marine vessels in Sanghai in 2003.” Environmental Science & Technology, Vol. 14, No. 15, pp. 5183–5190, DOI: 10.1021/es061979c.

    Article  Google Scholar 

  • Yang. H., Zhang, X., and Meng, Q. (2007). “Stackelberg games and multiple equilibrium behavior on networks.” Transportation Research Part B, Vol. 41, No. 8, pp. 841–861, DOI: 10.1016/j.trb.2007. 03.002.

    Article  Google Scholar 

  • Yau, P. S., Corbett, J. J., Wang. C., Cheng, Y., and Ho, K. F. (2012). “Estimation of exhaust emission from ocean-going vessels in Hong Kong.” Science of the Total Environment, Vol. 431, No. 32, pp.299–306, DOI: 10.1016/j.scitotenv.2012.03.092.

    Article  Google Scholar 

  • Yau, P. S., Lee, S. C., Cheng, Y., Huang, Y., Lai, S. C., and Xu, X. H. (2013). “Contribution of ship emissions to the fine particulate in the community near international port in Hong Kong.” Atmospheric Research, Vol. 124, No. 7, pp. 61–72, DOI: 10.1016/j.atmosres.2012.12.009.

    Article  Google Scholar 

  • Zan, Y. (1999). “Analysis of container port policy by the reaction of an equilibrium shipping market.” Maritime Policy & Management, Vol. 26, No. 4, pp. 367–381, DOI: 10.1080/030888399286808.

    Article  MathSciNet  Google Scholar 

  • Zhang, T., Zhao, Q., and Wu, W. (2008). “Bi-level programming model of container port game in the container transport supernetwork.” Journal of Applied Mathematics and Computing, Vol. 31, No. 1, pp. 13–32, DOI: 10.1007/s12190-008-0188-3.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongjoo Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Park, D. Conceptual framework and environmental issue in the freight transport system. KSCE J Civ Eng 20, 1109–1118 (2016). https://doi.org/10.1007/s12205-016-0752-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-016-0752-6

Keywords

Navigation