Skip to main content

Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan, Iran

Abstract

Excessive use of chemical fertilizers, especially nitrogen fertilizers to increase crop and improper purification, and delivery of municipal and industrial wastewater are proposed as factors that increase the amount of nitrate in groundwater in this area. Thus, investigation of nitrate contamination as one of the most important environmental problems in groundwater is necessary. In the present study, modeling and estimation of nitrate pollution in groundwater of marginal area of Zayandeh-rood River, Isfahan, Iran, was investigated using water quality and artificial neural networks. 100 wells (77 agriculture well, 13 drinking well and 10 gardens well) in the marginal area of Zayandeh-rood River, Isfahan, Iran were selected. MATLAB software and three-layer Perceptron network were used. The back-propagation learning rule and sigmoid activation function were applied for the training process. After frequent experiments, a network with one hidden layer and 19 neurons make the least error in the process of network training, testing and validation. ANN models can be applied for the investigation of water quality parameters.

This is a preview of subscription content, access via your institution.

References

  • Acutis, M., Ducco, G., and Grignani, C. (2000). “Stochastic use of the LEACHN model to forecast nitrate leaching in different maize cropping systems.” Eur. J. Agron., Vol. 13, No. 2–3, pp. 191–206.

    Article  Google Scholar 

  • Babiker, I. S., Mohamed, M. A., Terao, H., Kato, K., and Ohta, K. (2004). “Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system.” Environ. Int., Vol. 29, No. 8, pp. 1009–1017.

    Article  Google Scholar 

  • Bruton, J. M., McClendon, R. W., and Hoogenboom, G. (2000). “Estimating daily pan evaporation with artificial neural network.” Trans. ASAE, Vol. 43, No. 2, pp. 492–496.

    Article  Google Scholar 

  • Dorsch, M. M., Scragg, R. K. R., Mcmichael, A. J., Baghurst, P. A., and Dyer, K. F. (1984). “Congenital malformations and maternal drinking water supply in rural South Australia: A case control study.” Am. J. Epidemiol., Vol. 119, No. 4, pp. 473–486.

    Google Scholar 

  • El-Sadek, A., Feyen, J., and Ragab, R. (2002). “Simulation of nitrogen balance of maize field under different drainage strategies using the DRAINMOD-N model.” Irrig. Drain., Vol. 51, pp. 61–75.

    Article  Google Scholar 

  • French, M. N., Krayewski, W. F., and Cuykendall, R. R. (1992). “Rainfall forecasting in space and time using a neural networks.” J. Hydrol., Vol. 137, No. 1–3, pp. 1–37.

    Article  Google Scholar 

  • Hambright, K. D., Ragep, F. J., and Ginat, J. (2006). Water in the middle east: Cooperation and technological solutions in the jordan valley, University of Oklahoma Press.

    Google Scholar 

  • Jain, S. K., Das, A., and Srivastava, D. K. (1999). “Application of ANN for reservoir inflow prediction and operation.” J. Water Res. Plan. Manage., Vol. 125, No. 5, pp. 263–271.

    Article  Google Scholar 

  • Keskin, T. E., Düenci, M., and Kaçarolu, F. (2015). “Prediction of water pollution sources using artificial neural networks in the study areas of Sivas, Karabük and Bartn (Turkey).” Environmental Earth Sciences, Vol. 73, No. 9, pp. 5333–5347.

    Article  Google Scholar 

  • Khosravi Dehkordi, A., Afyuni, M., and Musavi, F. (2004). “Nitrate concentration in groundwater in the Zayanderoud river basin.” Environmental. Studies. J., Vol. 32, No. 39, pp. 33–40.

    Google Scholar 

  • Kumar, M., Raghuwanshi, N. S., Singh, R., Wallender, W. W., and Pruitt, W. O. (2002). “Estimating evapotranspiration using artificial neural networks.” J. Irrig. And Drain. ASCE, Vol. 128, No. 4, pp. 224–233.

    Article  Google Scholar 

  • Lek, S., Guiresse, M., and Giraudel, J. L. (1999). “Predicting stream nitrogen concentration from watershed features using neural networks.” Water Res., Vol. 33, No. 16, pp. 3469–3478.

    Article  Google Scholar 

  • Noh, H., Zhang, Q., Shin, B., Han, S., and Feng, L. (2006). “A neural network model of maize crop nitrogen stress assessment for a multispectral imaging sensor.” Biosyst. Eng., Vol. 94, No. 4, pp. 477–485.

    Article  Google Scholar 

  • Nor, A. S. M., Faramarzi, M., Yunus, M. A. M., and Ibrahim, S. (2014). “Nitrate and sulfate estimations in water sources using a planar electromagnetic sensor array and artificial neural network method.” IEEE, Vol. 15, No. 1, pp. 497–504.

    Google Scholar 

  • Odhiambo, L. O., Yoder, R. E., Yoder, D. C., and Hines, J. W. (2001). “Optimization of fuzzy evaporation model through neural training with input-output examples.” Trans. ASAE, Vol. 44, No. 6, pp. 1625–1633.

    Article  Google Scholar 

  • Panagopoulos, Y., Makropoulos, C., Baltas, E., and Mimikou, M. (2011). “SWAT parameterization for the identification of critical diffuse pollution source areas under data limitations.” Ecol. Model., Vol. 222, No. 19, pp. 3500–3512.

    Article  Google Scholar 

  • Park, J., Daniels, H. V., and Cho, S. H. (2013). “Nitrite toxicity and methemoglobin changes in southern flounder, paralichthys lethostigma, in brackish water.” J. World. Aquacult. Soc., Vol. 44, No. 5, pp. 726–734.

    Article  Google Scholar 

  • Park, Y. S., Cereghino, R., Compin, A., and Lek, S. (2003). “Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters.” Ecol. Model., Vol. 160, No. 3, pp. 265–280.

    Article  Google Scholar 

  • Rogers, L. L. and Dowla, F. U. (1994). “Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling.” Water Resour. Res., Vol. 30, No. 2, pp. 457–481.

    Article  Google Scholar 

  • Shukla, M. B., Kok, R., Prasher, S. O., Clark, G., and Lacroix, R. (1996). “Use of artificial neural network in transient drainage design.” Trans. ASAE, Vol. 39, No. 1, pp. 119–124.

    Article  Google Scholar 

  • Singh, K. P., Basant, A., Malik, A., and Jain, G. (2009). “Artificial neural network modeling of the river water quality–A case study.” Ecol. Model., Vol. 220, No. 6, pp. 888–895.

    Article  Google Scholar 

  • Sobedji, J. M., Van Es, H. M., and Huston, J. L. (2001). “N fate and transport under variable cropping history and fertilizer rate on loamy sand and clay loam soils: I. Calibration of the LEACHMN model.” Plant Soil, Vol. 299, No. 1, pp. 57–70.

    Article  Google Scholar 

  • Thirumalaian, K. and Deo, M. C. (1998). “River stage forecasting using artificial neural network.” J. Hydrol. Eng., Vol. 3, No. 1, pp. 26–32.

    Article  Google Scholar 

  • Trajkovic, S., Todorovic, B., and Standkovic, M. (2003). “Forecasting of reference evapotranspiration by artificial neural network.” J. Irrig. And Drain., ASCE, Vol. 129, No. 6, pp. 454–457.

    Article  Google Scholar 

  • Tuppad, P., Douglas-Mankin, K. R., Lee, T., Srinivasan, R., and Arnold, J. G. (2011). “Soil and Water Assessment Tool (SWAT) hydrologic/water quality model: Extended capability and wider adoption.” Am. Soc. Agric. Biol. Eng., Vol. 54, No. 5, pp. 1677–1684.

    Google Scholar 

  • Wen, C. W. and Lee, C. S. (1998). “A neural networkapproach to multiobjective optimization for water quality management in a river basin.” Water Resour. Res., Vol. 34, No. 3, pp. 427–436.

    Article  Google Scholar 

  • Yang, C. C., Prasher, S. O., and Lacroix, R. (1996). “Application of artificial neural network to land drainage engineering.” Trans. ASAE, Vol. 39, No. 2, pp. 525–533.

    Article  Google Scholar 

  • Yang, C. C., Prasher, S. O., Lacroix, R., Sreekanth, S., Patni, N. K., and Masse, L. (1997). “Artificial neural network model for subsurfacedrained farmlands.” J. Irrig. And Drain., ASCE, Vol. 123, No. 4, pp. 285–292.

    Article  Google Scholar 

  • Zealand, C. M., Burn, D. H., and Simonovic, S. P. (1999). “Short term streamflow forecasting using artificial neural networks.” J. Hydrol., Vol. 214, No. 1–3, pp. 32–48.

    Article  Google Scholar 

  • Zhang, X., Xu, Z., Sun, X., Dong, W., and Ballantine, D. (2013). “Nitrate in shallow groundwater in typical agricultural and forest ecosystems in China, 2004-2010.” J. Environ Sci. (China), Vol. 25, No. 5, pp. 1007–1014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaveh Ostad-Ali-Askari.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ostad-Ali-Askari, K., Shayannejad, M. & Ghorbanizadeh-Kharazi, H. Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan, Iran. KSCE J Civ Eng 21, 134–140 (2017). https://doi.org/10.1007/s12205-016-0572-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-016-0572-8

Keywords

  • artificial neural network
  • contamination
  • groundwater
  • nitrates