Skip to main content
Log in

Quantitative assessment on the variation of compressibility of Wenzhou marine clay during destructuration

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

A series of oedometer test were performed on both undisturbed and remolded specimens of Wenzhou marine clay to quantitatively investigate the degradation of soil structure during compression. The laboratory tests show that the swell index of both natural and remolded Wenzhou marine clay increase with the increase in consolidation stress. Hence, the normalizing parameter ‘swell sensitivity’, termed as the ratio of the remolded to the natural swelling index, can only be regarded as a qualitative parameter. On the other hand, the normalized stress sensitivity has a good parabolic relationship with the consolidation stress during destructuration. This result indicates that the stress sensitivity can be used as a quantitative interpretation of the degradation of soil structure for natural Wenzhou marine clay. Comparison between stress sensitivity and additional void ratio during destructuration shows that the variation of soil structure during destructuration represented by stress sensitivity and additional void ratio are essentially the same. In addition, the parameter used in formulating the variation of stress sensitivity with the stress level is correlated with natural void ratio and void ratio at liquid limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Khafaji, A. W. N. and Andersland, O. B. (1992). “Equations for compression index approximation.” Journal of Geotechnical Engineering, Vol. 118, No. 1, pp. 148–153, DOI: 10.1061/(ASCE)0733–9410(1992)118:1(148).

    Article  Google Scholar 

  • ASTM D2435/D2435M-11 (2011). Standard test methods for onedimensional consolidation properties of soils using incremental loading, ASTM International, West Conshohocken, PA.

    Google Scholar 

  • ASTM D2487–11 (2011). Standard practice for classification of soils for engineering purposes (unified soil classification system), ASTM International, West Conshohocken, PA.

    Google Scholar 

  • British Standard, BS 1377 (1990). British standard methods of test for soils for civil engineering purposes, British standard institution, London.

    Google Scholar 

  • Burland, J. B. (1990). “On the compressibility and shear strength of natural soils.” Géotechnique, Vol. 40, No. 3, pp. 329–378, DOI: 10.1680/geot.1990.40.3.329.

    Article  Google Scholar 

  • Burland, J. B., Rampello, S., Georgiannou, V. N., and Calabresi, G. (1996). “A laboratory study of the strength of four stiff clays.” Géotechnique, Vol. 46, No. 3, pp. 491–514, DOI: 10.1680/geot.1996.46.3.491.

    Article  Google Scholar 

  • Callisto, L. and Rampello, S. (2004). “An interpretation of structural degradation for three natural clays.” Canadian Geotechnical Journal, Vol. 41, No. 3, pp. 392–407, DOI: 10.1139/T03–099.

    Article  Google Scholar 

  • Chandler, R. J. (2000). “The third glossop lecture: Clay sediments in depositional basins: The geotechnical cycle.” Quarterly Journal of Engineering Geology and Hydrogeology, Vol. 33, No. 1, pp. 7–39, DOI: 10.1144/qjegh.33.1.7.

    Article  Google Scholar 

  • Chung, S. G., Prasad, K. N., Nagaraj, T. S., Chung, J. G., and Jo, K. Y. (2004). “Assessment of compressibility behavior of naturally cemented soft clays.” Marine Georesources and Geotechnology, Vol. 22, Nos. 1–2, pp. 1–20, DOI: 10.1080/10641190490466892.

    Article  Google Scholar 

  • Chung, S. G., Ryu, C. K., Min, S. C., Lee, J. M., Hong, Y. P., and Odgerel, E. (2012). “Geotechnical characterisation of busan clay.” KSCE Journal of Civil Engineering, Vol. 16, No. 3, pp. 341–350, DOI: 10.1007/s12205–012-1433–8.

    Article  Google Scholar 

  • Cotecchia, F. and Chandler, R. J. (1997). “The influence of structure on the pre-failure behaviour of a natural clay.” Géotechnique, Vol. 47, No. 3, pp. 523–544, DOI: 10.1680/geot.1997.47.3.523.

    Article  Google Scholar 

  • Cotecchia, F. and Chandler, R. J. (2000). “A general framework for the mechanical behaviour of clays.” Géotechnique, Vol. 50, No. 4, pp. 431–447, DOI: 10.1680/geot.2000.50.4.431.

    Article  Google Scholar 

  • Gasparre, A. and Coop, M. R. (2008). “Quantification of the effects of structure on the compression of a stiff clay.” Canadian Geotechnical Journal, Vol. 45, No. 9, pp. 1324–1334, DOI: 10.1139/T08–052.

    Article  Google Scholar 

  • Hight, D. W., Bond, A. J., and Legge, J. D. (1992). “Characterization of the Bothkennaar clay: An overview.” Géotechnique, Vol. 42, No. 2, pp. 303–347, DOI: 10.1680/geot.1992.42.2.303.

    Article  Google Scholar 

  • Hong, Z. S. (2006). “Correlating compression properties of sensitive clays using void index.” Géotechnique, Vol. 56, No. 8, pp. 573–577, DOI: 10.1680/geot.2006.56.8.573.

    Article  Google Scholar 

  • Hong, Z. S., Shen, S. L., Deng, Y., and Negami, T. (2007). “Loss of soil structure for natural sedimentary clays.” Geotechnical Engineering, The Proceedings of ICE, Vol. 160, No. 3, pp. 153–159, DOI: 10.1680/geng.2007.160.3.153.

    Article  Google Scholar 

  • Hong, Z. S., Yin, J., and Cui, Y. J. (2010). “Compression behaviour of remolded soils at high initial water contents.” Géotechnique, Vol. 60, No. 9, pp. 691–700, DOI: 10.1680/geot.09.P.059.

    Article  Google Scholar 

  • Hong, Z. S., Zeng, L. L., Cui, Y. J., Cai, Y. Q., and Lin, C. (2012). “Compression behaviour of natural and remolded clays.” Géotechnique, Vol. 62, No. 4, pp. 291–301, DOI: 10.1680/geot.10.P.046.

    Article  Google Scholar 

  • Horpibulsuk, S., Shibuya, S., Fuenkajorn, K., and Katkan, W. (2007). “Assessment of engineering properties of Bangkok clay.” Canadian Geotechnical Journal, Vol. 44, No. 2, pp. 173–187, DOI: 10.1139/t06–101.

    Article  Google Scholar 

  • Kabbaj, M., Tavenas, F., and Leroueil, S. (1988). “In situ and laboratory stress–strain relationships.” Géotechnique, Vol. 38, No. 1, pp. 83–100, DOI: 10.1680/geot.1988.38.1.83.

    Article  Google Scholar 

  • Karstunen, M. and Yin, Z. Y. (2010). “Modelling time-dependent behaviour of Murro test embankment.” Géotechnique, Vol. 60, No. 10, pp. 735–749, DOI: 10.1680/geot.8.P.027.

    Article  Google Scholar 

  • Kishore, Y. N., Rao, S. N., and Mani, J. S. (2009). “The Behavior of Laterally Loaded Piles Subjected to Scour in Marine Environment.” KSCE Journal of Civil Engineering, Vol. 13, No. 6, pp. 403–406, DOI: 10.1007/s12205–009-0403–2.

    Article  Google Scholar 

  • Kulkarni, M. P., Patel, A., and Singh, D. N. (2010). “Application of shear wave velocity for characterizing clays from coastal regions.” KSCE Journal of Civil Engineering, Vol. 14, No. 3, pp. 307–321, DOI: 10.1007/s12205–010-0307–1.

    Article  Google Scholar 

  • Lacasse, S., Berre, T., and Lefebvre. G. (1985). “Block sampling of sensitive clays.” Proceeding of 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, pp. 887–892.

    Google Scholar 

  • Leroueil, S. and Vaughan, P. R. (1990). “The general and congruent effects of structure in natural soils and weak rocks.” Géotechnique, Vol. 40, No. 3, pp. 467–488, DOI: 10.1680/geot.1990.40.3.467.

    Article  Google Scholar 

  • Leroueil, S., Tavenas, F., Brucy, F., La Rochelle, P., and Roy, M. (1979). “Behaviour of destructured natural clays.” Journal of Geotechnical Engineering, ASCE, Vol. 105, No. 6, pp. 759–778.

    Google Scholar 

  • Liu, M. D. and Carter, J. P. (2000). “Modelling the destructuring of soils during virgin compression.” Géotechnique, Vol. 50, No. 4, pp. 479–483, DOI: 10.1680/geot.2000.50.4.479.

    Article  Google Scholar 

  • Locat, J. and Lefebvre, G. (1986). “The origin of structuration of the Grande-Baleine marine sediments, Québec, Canada.” Quarterly Journal of Engineering Geology and Hydrogeology, Vol. 19, No. 4, pp. 365–374, DOI: 10.1144/GSL.QJEG.1986.19.04.03.

    Article  Google Scholar 

  • Low, H. E., Phoon, K. K., Tan, T. S., and Leroueil, S. (2008). “Effect of soil microstructure on the compressibility of natural Singapore marine clay.” Canadian Geotechnical Journal, Vol. 45, No. 2, pp. 161–176, DOI: 10.1139/T07–075.

    Article  Google Scholar 

  • Mitchell, J. K. (1976). Fundamentals of soil behavior, New York: Wiley.

    Google Scholar 

  • Picarelli, L. (1991). “Discussion on the paper “the general and congruent effects of structure in natural soils and weak rocks” by Leroueil and Vanghan.” Géotechnique, Vol. 41, No. 2, pp. 281–284, DOI: 10.1680/ geot.1991.41.2.281.

    Article  Google Scholar 

  • Schmertmann, J. H. (1969). “Swell sensitivity.” Géotechnique, Vol. 19, No. 4, pp. 530–533, DOI: 10.1680/geot.1969.19.4.530.

    Article  Google Scholar 

  • Shibuya, S., Jung, M., Chae, J., and Fujiwara, T. (2008). “Evaluation of short-term stability for sea-wall structure at kobe airport.” KSCE Journal of Civil Engineering, Vol. 12, No. 3, pp. 155–163, DOI: 10.1007/s12205–008-0155–4.

    Article  Google Scholar 

  • Sun, D. A., Chen, B., and Wei, C. (2014). “Effect of fabric on mechanical behavior of marine clays.” Marine Georesources & Geotechnology, Vol. 32, No. 1, pp. 1–17, DOI: 10.1080/1064119X.2012.710714.

    Article  Google Scholar 

  • Wang, Z. F., Shen, S. L., Ho, C. E., and Kim, Y. H. (2013). “Investigation of field installation effects of horizontal Twin-Jet grouting in Shanghai soft soil deposits.” Canadian Geotechnical Journal, Vol. 50, No. 3, pp. 288–297, DOI: 10.1139/cgj-2012–0199.

    Article  Google Scholar 

  • Watabe, Y., Udaka, K., Kobayashi, M., Tabata, T., and Emura, T. (2008). “Effects of friction and thickness on long-term consolidation behavior of Osaka Bay clays.” Soils and Foundations, Vol. 48, No. 4, pp. 547–561, DOI: 10.3208/sandf.48.547.

    Article  Google Scholar 

  • Wroth, C. P. and Wood, D. M. (1978). “The correlation of index properties with some basic engineering properties of soils.” Canadian Geotechnical Journal, Vol. 15, No. 2, pp. 137–145, DOI: 10.1139/t78–014.

    Article  Google Scholar 

  • Yin, Z. Y., Chang, C. S., Hicher, P. Y., and Wang, J. H. (2011). “Micromechanical analysis of the behavior of stiff clay.” Acta Mechanica Sinica, Vol. 27, No. 6, pp. 1013–1022, DOI: 10.1007/ s10409–011-0507-z.

    Article  Google Scholar 

  • Yin, Z. Y., Hattab, M., and Hicher, P. Y. (2011). “Multiscale modeling of a sensitive marine clay.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 35, No. 15, pp. 1682–1702, DOI: 10.1002/nag.977.

    Article  Google Scholar 

  • Yin, Z. Y., Karstunen, M., Chang, C. S., Koskinen, M., and Lojander, M. (2011). “Modeling time-dependent behavior of soft sensitive clay.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 137, No. 11, pp. 1103–1113, DOI: 10.1061/(ASCE) GT.1943–5606.0000527.

    Article  Google Scholar 

  • Yin, Z. Y., Yin, J. H., and Huang H. W. (2015). “Rate-dependent and long-term yield stress and strength of soft wenzhou marine clay: Experiments and modeling.” Marine Georesources & Geotechnology, Vol. 33, No. 1, pp. 79–91, DOI: 10.1080/1064119X.2013.797060.

    Article  Google Scholar 

  • Yoon, G. L. and Kim, B. T. (2006). “Regression analysis of compression index for Kwangyang marine clay.” KSCE Journal of Civil Engineering, Vol. 10, No. 6, pp. 415–418, DOI: 10.1007/BF02823980.

    Article  Google Scholar 

  • Zeng, L. L., Hong, Z. S., and Cui, Y. J. (2015). “Determining the virgin compression lines of remolded clays at different initial water contents.” Canadian Geotechnical Journal, Vol. 52, No. 9, pp. 1408–1415, DOI: 10.1139/cgj-2014–0172.

    Article  Google Scholar 

  • Zeng, L. L., Hong, Z. S., Cai, Y. Q., and Han, J. (2011). “Change of hydraulic conductivity during compression of undisturbed and remolded clays.” Applied Clay Science, Vol. 51, No. 1, pp. 86–93, DOI: 10.1016/jclay.2010.11.005.

    Article  Google Scholar 

  • Zhu, Q. Y., Yin, Z. Y., Hicher, P. Y., and Shen, S. L. (2015). “Nonlinearity of one-dimensional creep characteristics of soft clays.” Acta Geotechnica, pp. 1–14, DOI: 10.1007/s11440–015-0411-y.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Bian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, X., Ding, JW., Shi, J. et al. Quantitative assessment on the variation of compressibility of Wenzhou marine clay during destructuration. KSCE J Civ Eng 21, 659–669 (2017). https://doi.org/10.1007/s12205-016-0395-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-016-0395-7

Keywords

Navigation