Skip to main content

Stability of non-prismatic frames with flexible connections and elastic supports

Abstract

An accurate formulation is obtained to determine critical load, and corresponding equivalent effective length factor of a simple frame. The presented methodology is based on the exact solutions of the governing differential equations for buckling of a frame with tapered and/or prismatic columns. Accordingly, the influences of taper ratio, shape factor, flexibility of connections, and elastic supports on the critical load, and corresponding equivalent efficient length factor of the frame will be investigated. The authors' findings can be easily applied to the stability design of general non-prismatic frames. Moreover, comparing the results with the accessible outcomes demonstrate the accuracy, efficiency and capabilities of the proposed formulation.

This is a preview of subscription content, access via your institution.

References

  1. Al-Damluji, O. A.-F. and Yossif, W. V. (2005). “Elastic stability of frame having concave tapered structs.” Journal of Engineering, Vol. 11, No. 1, pp. 149–164.

    Google Scholar 

  2. Al-Sadder, S. Z. (2004). “Exact expressions for stability functions of a general non-prismatic beam-column member.”). Journal of Constructional Steel Research, Vol. 60, No. 11, pp. 1561–1584, DOI: 10.1016/j.jcsr. 2004.03.004.

    Article  Google Scholar 

  3. Al-Sadder, S. Z. and Qasravi, H. Y. (2004). “Exact secant stiffness matrix for non-prismatic beam-columns with elastic semi-rigid joint connections.”). Emirates Journal for Engineering Research, Vol. 9, No. 2, pp. 127–135.

    Google Scholar 

  4. Al-Sarraf, S. Z. (1979). “Elastic instability of frames with uniformly tapered members.”). Structural Engineer, Vol. 57, No. 13, pp. 18–24.

    Google Scholar 

  5. Arbabi, F. and Li, F. (1991). “Buckling of variable cross-section columns: integral-equation approach.”). Journal of Structural Engineering, Vol. 117, No. 8, pp. 2426–2441, DOI: 10.1061/(ASCE)0733-9445(1991) 117:8(2426).

    Article  Google Scholar 

  6. Avraam, T. P. and Fasoulakis, Z. C. (2013). “Nonlinear postbucklinganalysis of frames with varying cross-section columns.”). Engineering Structures, Vol. 56, pp. 1–7, DOI: 10.1016/j.engstruct.2013.04.010.

    Article  Google Scholar 

  7. Bairstow, L. and Stedman, E. W. (1914). “Critical loads of long struts of varying sections.”). Engineering, Vol. 98, p. 403.

    Google Scholar 

  8. Banerjee, J. R. (1987). “Compact computation of buckling loads for plane frames consisting of tapered members.” Advances in Engineering Software, Vol. 9, No. 3, pp. 162–170, DOI: 10.1016/0141-1195(87) 90006-4.

    Article  MATH  Google Scholar 

  9. Bazant, Z. P. and Cedolin, L. (2003). Stability of Structures: Elastic, Inelastic, Fracture, and Damage Theories. Courier Dover Publications.

    Google Scholar 

  10. Bazeos, N. and Karabalis, D. L. (2006). “Efficient computation of buckling loads for plane steel frames with tapered members.”). Engineering Structures, Vol. 28, No. 5, pp. 771–775, DOI: 10.1016/j.engstruct. 2005.10.004.

    Article  Google Scholar 

  11. Bleich, F. (1952). Buckling strength of metal structures (1st ed.), McGraw Hill Text.

    Google Scholar 

  12. Bulut, G. (2013). “Effect of taper ratio on parametric stability of a rotating tapered beam.”). European Journal of Mechanics- A/Solids, Vol. 37, pp. 344–350, DOI: 10.1016/j.euromechsol.2012.08.007.

    Article  MathSciNet  Google Scholar 

  13. Chajes, A. (1993). Principles of structural stability theory, Waveland Pr Inc.

    Google Scholar 

  14. Chan, S. L. (1990). “Buckling analysis of structures composed of tapered members.”). Journal of Structural Engineering, Vol. 116, No. 7, pp. 1893–1906, DOI: 10.1061/(ASCE)0733-9445(1990)116:7(1893).

    Article  Google Scholar 

  15. Chen, W. F. and Atsuta, T. (2007). Theory of Beam-Columns, Volume 1: In-Plane Behavior and Design. J. Ross Publishing.

    Google Scholar 

  16. Chen, W. F. and Lui, E. M. (1991). Stability Design of Steel Frames (1st ed.), CRC Press.

    Google Scholar 

  17. Coşkun, S. B. and Atay, M. T. (2009). “Determination of critical buckling load for elastic columns of constant and variable cross-sections using variational iteration method.”). Computers and Mathematics with Applications, Vol. 58, No. 11–12, pp. 2260–2266, DOI: 10.1016/j.camwa.2009.03.072.

    MathSciNet  MATH  Google Scholar 

  18. Darbandi, S. M., Firouz-Abadi, R. D., and Haddadpour, H. (2010). “Buckling of variable section columns under axial loading.”). Journal of Engineering Mechanics, Vol. 136, No. 4, pp. 472–476, DOI: 10.1061/(ASCE)EM.1943-7889.0000096.

    Article  Google Scholar 

  19. Dinnik, A. N. (1929). “Design of columns of varying cross-sections.”). Transactions, ASME, Vol. 51, pp. 165–171.

    Google Scholar 

  20. Dinnik, A. N. (1932). “Design of columns of varying cross-sections.”). Transactions, ASME, Vol. 54, pp. 105–109.

    Google Scholar 

  21. Duan, W. H. and Wang, C. M. (2008). “Exact solution for buckling of columns including self-weight.”). Journal of Engineering Mechanics, Vol. 134, No. 1, pp. 116–119, DOI: 10.1061/(ASCE)0733-9399(2008) 134:1(116).

    Article  Google Scholar 

  22. Eisenberger, M. and Reich, Y. (1989). “Static, vibration and stability analysis of non-uniform beams.”). Computers and Structures, Vol. 31, No. 4, pp. 567–573, DOI: 10.1016/0045-7949(89)90333-7.

    Article  Google Scholar 

  23. Elishakoff, I. and Rollot, O. (1999). “New closed-form solutions for buckling of a variable stiffness column by MATHEMATICA®.”). Journal of Sound Vibration, Vol. 224, pp. 172–182, DOI: 10.1006/ jsvi.1998.2143.

    Article  MathSciNet  MATH  Google Scholar 

  24. Ermopoulos, J. C. (1986). “Buckling of tapered bars under stepped axial loads.”). Journal of Structural Engineering, Vol. 112, No. 6, pp. 1346–1354, DOI: 10.1061/(ASCE)0733-9445(1986)112:6(1346).

    Article  Google Scholar 

  25. Ermopoulos, J. C. (1988). “Slope-deflection method and bending of tapered bars under stepped loads.”). Journal of Constructional Steel Research, Vol. 11, No. 2, pp. 121–141, DOI: 10.1016/0143-974X (88)90047-8.

    Article  Google Scholar 

  26. Ermopoulos, J. C. (1991). “Buckling length of framed compression members with semirigid connections.”). Journal of Constructional Steel Research, Vol. 18, No. 2, pp. 139–154, DOI: 10.1016/0143- 974X(91)90069-D.

    Article  Google Scholar 

  27. Ermopoulos, J. C. (1997). “Equivalent buckling length of non-uniform members.”). Journal of Constructional Steel Research, Vol. 42, No. 2, pp. 141–158, DOI: 10.1016/S0143-974X(97)00010-2.

    Article  Google Scholar 

  28. Ermopoulos, J. C. (1999). “Buckling length of non-uniform members under stepped axial loads.”). Computers and Structures, Vol. 73, No. 6, pp. 573–582, DOI: 10.1016/S0045-7949(98)00314-9.

    Article  MATH  Google Scholar 

  29. Ermopoulos, J. C., Ioannidis, S. S., and Kounadis, A. N. (1991). “Stability of battened columns with and without taper.”). Engineering Structures, Vol. 13, No. 3, pp. 237–241, DOI: 10.1016/0141-0296(91)90035-B.

    Article  Google Scholar 

  30. Ermopoulos, J. C. and Kounadis, A. N. (1985). “Stability of frames with tapered built-up members.”). Journal of Structural Engineering, Vol. 111, No. 9, pp. 1979–1992, DOI: 10.1061/(ASCE)0733-9445(1985)111: 9(1979).

    Article  Google Scholar 

  31. Euler, L. (1778). Die altitudine colomnarum sub proprio pondere corruentium, Acta Academiae Scientiarum Imperialis Petropolitan (in Latin).

    Google Scholar 

  32. Fraser, D. J. (1983). “Design of tapered member portal frames.”). Journal of Constructional Steel Research, Vol. 3, No. 3, pp. 20–26, DOI: 10.1016/0143-974X(83)90003-2.

    Article  Google Scholar 

  33. Galambos, T. V. (Ed.). (1998). Guide to stability design criteria for metal structures (5th ed.), Wiley.

    Google Scholar 

  34. Gere, J. M. and Carter, W. O. (1962). “Critical buckling loads for tapered columns.”). Journal of the Structural Division, Vol. 88, No. 1, pp. 1–12.

    Google Scholar 

  35. Huang, Y. and Li, X.-F. (2010). “A new approach for free vibration of axially functionally graded beams with non-uniform cross-section.”). Journal of Sound and Vibration, Vol. 329, No. 11, pp. 2291–2303, DOI: 10.1016/j.jsv.2009.12.029.

    Article  Google Scholar 

  36. Huang, Y. and Li, X.-F. (2011). “Buckling analysis of nonuniform and axially graded columns with varying flexural rigidity.”). Journal of Engineering Mechanics, Vol. 137, No. 1, pp. 73–81, DOI: 10.1061/ (ASCE)EM.1943-7889.0000206.

    Article  Google Scholar 

  37. Huang, Y. and Li, X.-F. (2012). “An analytic approach for exactly determining critical loads of buckling of nonuniform columns.”). International Journal of Structural Stability and Dynamics, Vol. 12, No. 4, pp. 1250027, DOI: 10.1142/S0219455412500277.

    Article  MathSciNet  Google Scholar 

  38. Iremonger, M. J. (1980). “Finite difference buckling analysis of nonuniform columns.”). Computers and Structures, Vol. 12, No. 5, pp. 741–748, DOI: 10.1016/0045-7949(80)90176-5.

    Article  MathSciNet  MATH  Google Scholar 

  39. Karabalis, D. L. and Beskos, D. E. (1983). “Static, dynamic and stability analysis of structures composed of tapered beams.”). Computers and Structures, Vol. 16, No. 6, pp. 731–748, DOI: 10.1016/0045-7949 (83)90064-0.

    Article  MATH  Google Scholar 

  40. Konstantakopoulos, T. G., Raftoyiannis, I. G., and Michaltsos, G. T. (2012). “Stability of steel columns with non-uniform cross-sections.”). The Open Construction and Building Technology Journal, Vol. 6, pp. 1–7, DOI: 10.2174/1874836801206010001.

    Article  Google Scholar 

  41. Kounadis, A. N. and Ermopoulos, J. C. (1984). “Postbuckling analysis of a simple frame with varying stiffness.”). Acta Mechanica, Vol. 54, No. 1, pp. 95–105, DOI: 10.1007/BF01190599.

    Article  Google Scholar 

  42. Lee, B. K., Carr, A. J., Lee, T. E., and Kim, I. J. (2006). “Buckling loads of columns with constant volume.”). Journal of Sound and Vibration, Vol. 294, Nos. 1–2, pp. 381–387, DOI: 10.1016/j.jsv.2005.11.004.

    Article  Google Scholar 

  43. Lee, G. C. and Morrell, M. L. (1975). “Application of AISC design provisions for tapered members.”). Engineering Journal, Vol. 12, pp. 1–13.

    Google Scholar 

  44. Li, G. Q. and Li, J. J. (2000). “Effects of shear deformation on theeffictive lentgh of tappered colums with I-section for steel portal frames.”). Structural Engineering and Mechanics, Vol. 20, pp. 479–489, DOI: 10.12989/sem.2000.10.5.479.

    Article  Google Scholar 

  45. Li, G. Q. and Li, J. J. (2004). “Buckling analysis of tapered lattice columns using a generalzed finite element.” Communications in Numerical Methods in Engineering, Vol. 20, No. 5, pp. 479–488, DOI: 10.1002/ cnm.684.

    Article  Google Scholar 

  46. Li, Q. S. (2000). “Buckling of elastically restrained non-uniform columns.”). Engineering Structures, Vol. 22, No. 10, pp. 1231–1243, DOI: 10.1016/S0141-0296(99)00079-6.

    Article  Google Scholar 

  47. Li, Q. S. (2001a). “Analytical solutions for buckling of multi-step nonuniform columns with arbitrary distribution of flexural stiffness or axial distributed loading.”). International Journal of Mechanical Sciences, Vol. 43, No. 2, pp. 349–366, DOI: 10.1016/S0020- 7403(00)00017-5.

    Article  MATH  Google Scholar 

  48. Li, Q. S. (2001b). “Exact solutions for buckling of non-uniform columns under axial concentrated and distributed loading.”). European Journal of Mechanics- A/Solids, Vol. 20, No. 3, pp. 485–500, DOI: 10.1016/ S0997-7538(01)01143-3.

    Article  Google Scholar 

  49. Li, Q. S. (2003). “Buckling analysis of non-uniform bars with rotational and translational springs.”). Engineering Structures, Vol. 25, No. 10, pp. 1289–1299, DOI: 10.1016/S0141-0296(03)00079-8.

    Article  Google Scholar 

  50. Li, Q. S. (2009). “Exact solutions for the generalized euler’s problem.”). Journal of Applied Mechanics, Vol. 76, No. 4, pp. 041015, DOI: 10.1115/1.2937151.

    Article  Google Scholar 

  51. Li, Q. S., Cao, H. and Li, G. Q. (1995). “Stability analysis of bars with varying cross-section.”). International Journal of Solids and Structures, Vol. 32, No. 21, pp. 3217–3228, DOI: 10.1016/0020-7683(94)00272- X.

    Article  MATH  Google Scholar 

  52. Li, Q. S., Cao, H., and Li, G. Q. (1996). “Static and dynamic analysis of straight bars with variable cross-section.”). Computers and Structures, Vol. 59, No. 6, pp. 1185–1191, DOI: 10.1016/0045-7949(95)00333-9.

    Article  MATH  Google Scholar 

  53. Marques, L., Taras, A., Simões da Silva, L., Greiner, R., and Rebelo, C. (2012). “Development of a consistent buckling design procedure for tapered columns.”). Journal of Constructional Steel Research, Vol. 72, pp. 61–74, DOI: 10.1016/j.jcsr.2011.10.008.

    Article  Google Scholar 

  54. Meng, L. X., Lu, N. L., and Liu, S. M. (2011). “Exact expression of element stiffness matrix for a tapered beam and its application in stability analysis.”). Advanced Materials Research, Vol. 255–260, 1968-1973, DOI:10.4028/www.scientific.net/AMR.255-260.1968.

  55. Morley, A. (1917). “Critical loads for long tapering struts.” Engineering, Vol. 104, p. 295–298.

    Google Scholar 

  56. O’Rourke, M. and Zebrowski, T. (1977). “Buckling load for nonuniform columns.” Computers and Structures, Vol. 7, No. 6, pp. 717–720, DOI: 10.1016/0045-7949(77)90025-6.

    Article  MATH  Google Scholar 

  57. Ozay, G. and Topcu, A. (2000). “Analysis of frames with non-prismatic members.”). Canadian Journal of Civil Engineering, Vol. 27, No. 1, pp. 17–25, DOI: 10.1139/l99-037.

    Article  Google Scholar 

  58. Pinarbasi, S., Okay, F., Akpinar, E., and Erdogan, H. (2013). “Stability analysis of two-segment stepped columns with different end conditions and internal axial loads.”). Mathematical Problems in Engineering, Vol. 2013, p. 858906, DOI: 10.1155/2013/858906.

    Article  MathSciNet  Google Scholar 

  59. Qiusheng, L., Hong, C., and Guiqing, L. (1995). “Stability analysis of bars with varying cross-section.” International Journal of Solids and Structures, Vol. 32, No. 21, pp. 3217–3228, DOI: 10.1016/0020- 7683(94)00272-X.

    Article  MATH  Google Scholar 

  60. Raftoyiannis, I. G. (2005). “The effect of semi-rigid joints and an elastic bracing system on the buckling load of simple rectangular steel frames.”). Journal of Constructional Steel Research, Vol. 61, No. 9, pp. 1205–1225, DOI: 10.1016/j.jcsr.2005.01.005.

    Article  Google Scholar 

  61. Raftoyiannis, I. G. and Ermopoulos, J. C. (2005). “Stability of tapered and stepped steel columns with initial imperfections.”). Engineering Structures, Vol. 27, No. 8, pp. 1248–1257, DOI: 10.1016/j.engstruct. 2005.03.009.

    Article  Google Scholar 

  62. Rahai, A. R. and Kazemi, S. (2008). “Buckling analysis of non-prismatic columns based on modified vibration modes.”). Communications in Nonlinear Science and Numerical Simulation, Vol. 13, No. 8, pp. 1721–1735, DOI: 10.1016/j.cnsns.2006.09.009.

    Article  MATH  Google Scholar 

  63. Rezaiee-Pajand, M. and Moayedian, M. (2000). “Explicit stiffness of tapered and monosymmetric I beam-columns.”). International Journal of Engineering, Vol. 13, No. 2, pp. 1–18.

    Google Scholar 

  64. Saffari, H., Rahgozar, R., and Jahanshahi, R. (2008). “An efficient method for computation of effective length factor of columns in a steel gabled frame with tapered members.”). Journal of Constructional Steel Research, Vol. 64, No. 4, pp. 400–406, DOI: 10.1016/j.jcsr. 2007.09.001.

    Article  Google Scholar 

  65. Serna, M. A., Ibáñez, J. R., and López, A. (2011). “Elastic flexural buckling of non-uniform members: Closed-form expression and equivalent load approach.”). Journal of Constructional Steel Research, Vol. 67, No. 7, pp. 1078–1085, DOI: 10.1016/j.jcsr.2011.01.003.

    Article  Google Scholar 

  66. Shooshtari, A. and Khajavi, R. (2010). “An efficient procedure to find shape functions and stiffness aatrices of nonprismatic euler-bernoulli and timoshenko beam elements.”). European Journal of Mechanics A-Solids, Vol. 29, No. 5, DOI: 10.1016/j.euromechsol.2010.04.003.

    Google Scholar 

  67. Siginer, A. (1992). “Buckling of columns of variable flexural rigidity.” Journal of Engineering Mechanics, Vol. 118, No. 3, pp. 640–643, DOI: 10.1061/(ASCE)0733-9399(1992)118:3(640).

    Article  Google Scholar 

  68. Smith, W. G. (1988). “Analytic solutions for tapered column buckling.”). Computers and Structures, Vol. 28, No. 5, pp. 677–681, DOI: 10.1016/0045-7949(88)90011-9.

    Article  MATH  Google Scholar 

  69. Taha, M. and Essam, M. (2013). “Stability behavior and free vibration of tapered columns with elastic end restraints using the DQM method.”). Ain Shams Engineering Journal, Vol. 4, No. 3, pp. 515–521, DOI: 10.1016/j.asej.2012.10.005.

    Article  Google Scholar 

  70. Timoshenko, S. P. (1908). Buckling of bars of variable cross section, Bulletin of the Polytechnic Institute, Kiev, Ukraine.

    Google Scholar 

  71. Timoshenko, S. P. and Gere, J. M. (2009). Theory of elastic stability, Dover Publications.

    Google Scholar 

  72. Valipour, H. R. and Bradford, M. A. (2012). “A new shape function for tapered three-dimensional beams with flexible connections.”). Journal of Constructional Steel Research, Vol. 70, pp. 43–50, DOI: 10.1016/ j.jcsr.2011.10.006.

    Article  Google Scholar 

  73. Wang, C. K. (1967). “Stability of rigid frames with nonuniform members.”). Journal of the Structural Division, Vol. 93, No. 1, pp. 275–294.

    Google Scholar 

  74. Wang, C. M. and Wang, C. Y. (2004). Exact Solutions for Buckling of Structural Members (1st ed.), CRC Press.

    Book  Google Scholar 

  75. Wei, D. J., Yan, S. X., Zhang, Z. P., and Li, X. F. (2010). “Critical load for buckling of non-prismatic columns under self-weight and tip force.”). Mechanics Research Communications, Vol. 37, No. 6, pp. 554–558, DOI:10.1016/j.mechrescom.2010.07.024.

    Article  MATH  Google Scholar 

  76. Williams, F. W. and Aston, G. (1989). “Exact or lower bound tapered column buckling loads.”). Journal of Structural Engineering, Vol. 115, No. 5, pp. 1088–1100, DOI: 10.1061/(ASCE)0733-9445(1989) 115: 5(1088).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Rezaiee-Pajand.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rezaiee-Pajand, M., Shahabian, F. & Bambaeechee, M. Stability of non-prismatic frames with flexible connections and elastic supports. KSCE J Civ Eng 20, 832–846 (2016). https://doi.org/10.1007/s12205-015-0765-6

Download citation

Keywords

  • non-prismatic frames
  • tapered columns
  • taper ratio
  • elastic supports
  • flexible connections
  • critical buckling load
  • effective length factor