Skip to main content
Log in

A multi-objective DCP model for bi-level resource-constrained project scheduling problems in grounding grid system project under hybrid uncertainty

  • Construction Management
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Since more elements are involved in the construction projects, the decision making process of Resource-constrained Project Scheduling Problems (RCPSP) cannot be determined by a manager, but multiple level decision makers. This study focuses on the RCPSP in a practical grounding grid system project in Jin’ An Qiao hydropower station, which consider the hierarchical organization structure and hybrid uncertainty environment simultaneously. In this practical RCPSP, the construction contractor is the Upper Level Decision Maker (ULDM), while the outsourcing partner is the Lower Level Decision Maker (LLDM). Considering the operations difficulties and practical decision making process in the RCPSP, a bi-level multi-objective RCPSP model with bi-random coefficients is developed. To deal with the bi-random variables in the model, the Dependent-Chance Programming (DCP) method is introduced and the equivalent crisp model is derived. Subsequently, motivated by the particular nature of model, Bi-level Global-local-neighbor Particle Swarm Optimization Algorithm (BGLN-PSO) is designed to obtain the optimal schedule for grounding grid system project. A practical application is presented to verify the efficiency of proposed bi-level multi-objective RCPSP model and algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharya, N., Lee, Y., and Choi, S. (2006). “Key Attitude Indicators (KAI) for measuring attitude of contractors in construction projects.” KSCE Journal of Civil Engineering, Vol. 10, No. 6, pp. 151–163, DOI: 10.1007/BF02824056.

    Article  Google Scholar 

  • Ai, T. and Kachitvichyanukul, V. (2009). “A particle swarm optimization for the vehicle routing problem with simultaneous pickup and delivery.” Computers & Operations Research, Vol. 36, No. 5, pp. 1693–1702, DOI: 10.1016/j.cor.2008.04.003.

    Article  MATH  Google Scholar 

  • Ashtiani, B., Leus, R., and Aryanezhad, M. (2011). “New competitive results for the stochastic resource-constrained project scheduling problem: Exploring the benefits of pre-processing.” Journal of Scheduling, Vol. 14, No. 2, pp. 157–171, DOI: 10.1007/s10951-009-0143-7.

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Ayed, O. and Blair, C. (1990). “Computational difficulties of bilevel linear programming.” Operation Research, Vol. 38, pp. 556–560, DOI: 10.1287/opre.38.3.556.

    Article  MathSciNet  MATH  Google Scholar 

  • Bianco, L. and Caramia, M. (2012). “An exact algorithm to minimize the makespan in project scheduling with scarce resources and generalized precedence relations.” European Journal of Operational Research, Vol. 219, No. 1, pp. 73–85, DOI: 10.1016/j.ejor.2011.12.019.

    Article  MathSciNet  MATH  Google Scholar 

  • Brucker, P., Drexl, A., Mohring, R., Neumann, K., and Pesch, E. (1999). “Resource-constrained project scheduling: Notation, classification, models, and methods.” European Journal of Operational Research, Vol. 112, No. 1, pp. 3–41, DOI: 10.1016/S0377-2217(98)00204-5.

    Article  MATH  Google Scholar 

  • Charnes, A. and Cooper, W. (1959). “Chance-constrained programming.” Management Science, Vol. 6, pp. 73–79, DOI: 10.1007/978-1-4419-1153-7_200034.

    Article  MathSciNet  MATH  Google Scholar 

  • Damay, J., Quilliot, A., and Sanlaville, E. (2007). “Linear programming based algorithms for preemptive and non-preemptive RCPSP.” European Journal of Operational Research, Vol. 182, No. 3, pp. 1012–1022., DOI: 10.1016/j.ejor.2006.09.052.

    Article  MATH  Google Scholar 

  • Demeulemeester, E. and Herroelen, W. (2002). “Project scheduling: A research handbook.” Boston: Kluwer Academic Publishers. ISBN-13: 9781475785166.

    MATH  Google Scholar 

  • Dong, N., Fischer, M., Haddad, Z., and Levitt, R. (2013). “A method to Automate Look-ahead Schedule (LAS) generation for the finishing phase of construction projects.” Automation in Construction, Vol. 35, pp. 157–173, DOI: 10.1016/j.autcon.2013.05.023.

    Article  Google Scholar 

  • Fallah, M., Aryanezhad, M., and Ashtiani, B. (2010). “Preemptive resource constrained project scheduling problem with uncertain resource availabilities: Investigate worth of proactive strategies.” IEEE International Conference on Industrial Engineering and Engineering Management, pp. 646–650, DOI: 10.1109/IEEM.2010.5674528.

    Google Scholar 

  • Freeman, R. (1960). “A generalized network approach to project activity sequencing.” IRE Transactions on Engineering Management, Vol. 7, pp. 103–107, DOI: 10.1109/IRET-EM.1960.5007550.

    Article  Google Scholar 

  • Garey, M. and Johnson, D. (1979). Computers and intractability. A guide to the theory of NP-completeness, New York: Freeman. DOI: 10.2307/2273574.

    MATH  Google Scholar 

  • Huang, W. and Ding, L. (2011). “Project-scheduling problem with random time-dependent activity duration times.” IEEE Transactions on Engineering Management, Vol. 58, No. 2, pp. 377–387, DOI: 10.1109/TEM.2010.2063707.

    Article  Google Scholar 

  • Kennedy, J. and Eberhart, R. (1995). “Particle swarm optimization.” Proceedings of the IEEE Conference on Neural Networks, Piscataway: IEEE Service Center, pp. 1942–1948. DOI: 10.1109/ICNN.1995.488968.

    Chapter  Google Scholar 

  • Khoshjahan, Y., Najafi, A., and Nadjafi, B. (2013). “Resource constrained project scheduling problem with discounted earliness—tardiness penalties: Mathematical modeling and solving procedure.” Computers & Industrial Engineering, Vol. 66, No. 2, pp. 293–300, DOI: 10.1016/j.cie.2013.06.017.

    Article  Google Scholar 

  • Kolisch, R. and Padman, R. (2001). “An integrated survey of deterministic project scheduling.” Omega, Vol. 29, pp. 249–272, DOI: 1016/S0305-0483(00)00046-3.

    Article  Google Scholar 

  • Koné, O. and Artigues, C. (2011). “Event-based MILP models for resource-constrained project scheduling problems.” Computers & Operations Research, Vol. 38, No. 1, pp. 3–13, DOI: 10.1016/j.cor.2009.12.011.

    Article  MathSciNet  MATH  Google Scholar 

  • Kopanos, G., Puigjaner, L., and Georgiadis, M. (2009) “A bi-level decomposition methodology for scheduling batch chemical production facilities.” Computer Aided Chemical Engineering, Vol. 1627, pp. 681–686, DOI: 10.1016/S1570-7946(09)70334-7.

    Article  Google Scholar 

  • Kuo, R. and Huang, C. (2009). “Application of particle swarm optimization algorithm for solving bi-level linear programming problem.” Computers & Mathematics with Applications, Vol. 58, No. 4, pp. 678–685, DOI: 10.1016/j.camwa.2009.02.028.

    Article  MathSciNet  MATH  Google Scholar 

  • Lambrechts, O., Demeulemeester, E., and Herroelen, W. (2008). “A tabu search procedure for developing robust predictive project schedules.” International Journal of Production Economics, Vol. 111, No. 2, pp. 493–508, DOI: 10.1016/j.ijpe.2007.02.003.

    Article  MathSciNet  Google Scholar 

  • Lambrechts, O., Demeulemeester, E., and Herroelen, W. (2008). “Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities.” Journal of Scheduling, Vol. 11, No. 2, pp. 121–136, DOI: 10.1007/s10951-007-0021-0.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, X., Tian, P., and Min, X. (2006). “A hierarchical particle swarm optimization for solving bilevel programming problems.” Artificial Intelligence and Soft Computing, Vol. 4029, pp. 1169–1178, DOI: 10.1007/11785231_122.

    Google Scholar 

  • Lin, Y. (2008). “Project management for arbitrary random durations and cost attributes by applying network approaches.” Computers & Mathematics with Applications, Vol. 56, No. 10, pp. 2650–2655, DOI: 10.1016/j.camwa.2008.05.026.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, B. (1997). “Dependent-chance programming: A class of stochastic optimization.” Computers & Mathematics with Applications, Vol. 34, No.12, pp. 89–104, DOI: 10.1016/S0898-1221(97)00237-X.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, B. and Iwamura, K. (1997). “Modelling stochastic decision systems using dependent-chance programming.” European Journal of Operational Research, Vol. 101, No. 1, pp. 193–203. DOI: 10.1016/0377-2217(95)00371-1.

    Article  MATH  Google Scholar 

  • Liu, B. (2002). Theory and practice of uncertain programming, New York: Physica Verlag. DOI: 10.1007/978-3-540-89484-1.

    Book  MATH  Google Scholar 

  • Matroud, F. and Matroud, H. (2013). “Solving bi-level programming with multiple linear objectives at lower level using particle swarm optimization.” Journal of mathematics and computer science, Vol. 7, pp. 221–229. http://tjmcs.com/includes/files/articles/Vol7_Iss3_221-229_Solving_bi-level_programming_with_m.pdf

    Google Scholar 

  • Newbold, R. (1998). Project Management in the Fast Lane-Applying the Theory of Constraints [M], Cambridge: The St Lucie Press, ISBN-13: 978-1574441956.

    Google Scholar 

  • Peng, H., Chen, Z., and Sun, L. (2010). “A bi-level program for solving project scheduling problems in network level pavement management system.” Journal of Tongji University (Natural Science), Vol. 38, No. 3, pp. 380–385, DOI: 10.3969/j.issn.0253-374x.2010.03.012.

    MATH  Google Scholar 

  • Peng, J. and Liu, B. (2007). “Bi-random variables and bi-random programming.” Computers & Industrial Engineering, Vol. 53, pp. 433–453, DOI: 10.1016/j.cie.2004.11.003.

    Article  Google Scholar 

  • Shi, Y. and Eberhart, R. (1998). A modified particle swarm optimizer. Proc. IEEE Int. Conf. on Neural Networks, pp. 69–73, DOI: 10.1109/ICEC.1998.699146.

    Google Scholar 

  • Sobel, M. Szmerekovsky, and Tilson, V. (2009). “Scheduling projects with stochastic activity duration to maximize expected net present value.” European Journal of Operational Research, Vol. 198, No. 3, pp. 697–705, DOI: 10.1016/j.ejor.2008.10.004.

    Article  MathSciNet  MATH  Google Scholar 

  • Tan, Y., Zhong, W., and Xu, N. (2001). “Bi-level decision method for multi-resource constrained multi-project scheduling.” Systems Engineering-Theory & Practice, Vol. 21, No. 2, pp. 1–5. http://www.sysengi.com/EN/volumn/volumn_6225_abs.shtml

    Google Scholar 

  • Torres, J., Franco, E., and Mayorga, C. (2010). “Project scheduling with limited resources using a genetic algorithm.” International Journal of Project Management, Vol. 28, No. 6, pp. 619–628, DOI: 10.1016/j.ijproman.2009.10.003.

    Article  Google Scholar 

  • Veeramachaneni, K., Peram, T., Mohan, C., and Osadciw, L. (2003). “Optimization using particle swarms with near neighbor interaction.” Proceedings of genetic and evolutionary computation conference, pp. 110–121, DOI: 10.1007/3-540-45105-6_10.

    Google Scholar 

  • Wu, Y., Zhou, J., and Yang, J. (2005) “Dependent-Chance Programming Model for Stochastic Network Bottleneck Capacity Expansion Based on Neural Network and Genetic Algorithm.” Advances in Natural Computation, Vol. 3612, pp. 120–128. DOI: 10.1007/11539902_14.

    Article  Google Scholar 

  • Xu, J. and Gang, J. (2013). “Multi-objective bilevel construction material transportation scheduling in large-scale construction projects under a fuzzy random environment.” Transportation Planning and Technology, Vol. 36, No. 4, pp. 352–376, DOI: 10.1080/03081060.2013.798486.

    Article  Google Scholar 

  • Xu, J. and Yao, L. (2011). Random-like multiple objective decision making, Springer, DOI: 10.1007/978-3-642-18000-2.

    Google Scholar 

  • Xu, J. and Zhou X. (2009). “A class of multi-objective expected value decision-making model with bi-random coefficients and its application to flow shop scheduling problem.” Information Sciences, Vol. 179, pp. 2997–3017, DOI: 10.1016/j.ins.2009.04.009.

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, J., Zhang, Z., and Mookerjee, V. (2013). “Applying bi-random modm model to navigation coordinated scheduling: A case study of three gorges project.” Transport, Vol. 28, No. 2, pp. 140–157, DOI: 10.3846/16484142.2013.801363.

    Article  Google Scholar 

  • Zhang, Z. (2011). Bi-Level Multi-Objective Resource-Constrained Project Scheduling Models under complex random phenomena and the Application, Doctoral Dissertation, Sichuan University. (In Chinese).

    Google Scholar 

  • Zhang, Z. and Xu, J. (2013) “A multi-mode resource-constrained project scheduling model with bi-random coefficients for drilling grouting construction project.” International Journal of Civil Engineering, Vol. 11, No. 1, pp. 1–13. http://ijce.iust.ac.ir/files/site1/user_files_6k93w6/eng/zhangzhe-A-10-1199-1-2da1a78.pdf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Liu, M., Zhou, X. et al. A multi-objective DCP model for bi-level resource-constrained project scheduling problems in grounding grid system project under hybrid uncertainty. KSCE J Civ Eng 20, 1631–1641 (2016). https://doi.org/10.1007/s12205-015-0615-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-015-0615-6

Keywords

Navigation