Skip to main content
Log in

An efficient hybrid differential evolution based serial method for multimode resource-constrained project scheduling

  • Construction Management
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The Multimode Resource-Constrained (MRC) problem aims at finding the start times and execution modes for the activities of a project that minimizes project duration under current precedence constraints and resource limitations. This study integrates the fuzzy c-means clustering technique and the chaotic technique into the Differential Evolution to develop the Fuzzy Clustering Chaotic-based Differential Evolution (FCDE) algorithm, an efficient hybrid approach to solving MRC and other related problems. Within the FCDE, the chaos prevents the optimization algorithm from premature convergence and the fuzzy c-means clustering acts as several multi-parent crossover operators for utilizing population information efficiently and enhance convergence efficiency. Further, this study applies a serial method to reflect individual-user priorities into the active schedule and the project duration calculations. Experiments run indicate that the proposed FCDE-MRC obtains optimal results more reliably and efficiently than the benchmark algorithms considered. The FCDE-MRC is a promising alternative methodology to handling resource-constrained problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcaraz, J. and Maroto, C. (2001). “A robust genetic algorithm for resource allocation in project scheduling.” Annals of Operations Research, Vol. 102, Nos. 1–4, pp. 83–109, DOI: 10.1023/A:1010949931021.

    Article  MathSciNet  Google Scholar 

  • Alcaraz, J., Maroto, C., and Ruiz, R. (2003). “Solving the multi-mode resource-constrained project scheduling problem with genetic algorithms.” Journal of the Operational Research Society, Vol. 54, No. 6, pp. 614–626, DOI: 10.1057/palgrave.jors.2601563.

    Article  Google Scholar 

  • Ozer, A. B. (2010). “CIDE: Chaotically initialized differential evolution.” Expert Systems with Applications, Vol. 37, No. 6, pp. 4632–4641, DOI: 10.1016/j.eswa.2009.12.045.

    Article  Google Scholar 

  • Cai, Z., Gong, W., Ling, C. X., and Zhang, H. (2011). “A clusteringbased differential evolution for global optimization.” Applied Soft Computing, Vol. 11, No. 1, pp. 1363–1379, DOI: 10.1016/j.asoc.2010.04.008.

    Article  Google Scholar 

  • Cheng, M. Y., and Tran, D. H. (2014). “Two-phase differential evolution for the multiobjective optimization of time–cost tradeoffs in Resourceconstrained construction projects.” Engineering Management, IEEE Transactions on, Vol. 61, No. 3, pp. 450–461, DOI: 10.1109/TEM.2014.2327512.

    Article  Google Scholar 

  • Cheng, M.-Y., Huang, K.-Y., and Chen, H.-M. (2012). “Dynamic guiding particle swarm optimization with embedded chaotic search for solving multidimensional problems.” Optimization Letters, Vol. 6, No. 4, pp. 719–729, DOI: 10.1007/s11590-011-0297-z.

    Article  Google Scholar 

  • Damak, N., Jarboui, B., Siarry, P., and Loukil, T. (2009). “Differential evolution for solving multi-mode resource-constrained project scheduling problems.” Computers & Operations Research, Vol. 36, No. 9, pp. 2653–2659, DOI: 10.1016/j.cor.2008.11.010.

    Article  MathSciNet  Google Scholar 

  • Deb, K. (2005). “A population-based algorithm-generator for real-parameter optimization.” Soft Comput, Vol. 9, No. 4, pp. 236–253, DOI: 10.1007/s00500-004-0377-4.

    Article  Google Scholar 

  • Elbeltagi, E., Hegazy, T., and Grierson, D. (2005). “Comparison among five evolutionary-based optimization algorithms.” Advanced Engineering Informatics, Vol. 19, No. 1, pp. 43–53, DOI: 10.1016/j.aei.2005.01.004.

    Article  Google Scholar 

  • Elloumi, S. and Fortemps, P. (2010). “A hybrid rank-based evolutionary algorithm applied to multi-mode resource-constrained project scheduling problem.” European Journal of Operational Research, Vol. 205, No. 1, pp. 31–41, DOI: 10.1016/j.ejor.2009.12.014.

    Article  MathSciNet  Google Scholar 

  • Jarboui, B., Damak, N., Siarry, P., and Rebai, A. (2008). “A combinatorial particle swarm optimization for solving multi-mode resourceconstrained project scheduling problems.” Applied Mathematics and Computation, Vol. 195, No. 1, pp. 299–308, DOI: 10.1016/j.amc.2007.04.096.

    Article  MathSciNet  Google Scholar 

  • Jia, D., Zheng, G., and Khurram Khan, M. (2011). “An effective memetic differential evolution algorithm based on chaotic local search.” Information Sciences, Vol. 181, No. 15, pp. 3175–3187, DOI: 10.1016/j.ins.2011.03.018.

    Article  Google Scholar 

  • Jiang, B. L. W. (1998). “Optimizing complex functions by chaos search.” Cybernetics and Systems, Vol. 29, No. 4, pp. 409–419, DOI: 10.1080/019697298125678.

    Article  Google Scholar 

  • Kim, J. H. and Stringer, J. (1992). Applied chaos, Electric Power Research Institute, Palo Alto, California.

    Google Scholar 

  • Kolisch, R. (1996). “Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation.” European Journal of Operational Research, Vol. 90, No. 2, pp. 320–333, DOI: 10.1016/0377-2217(95)00357-6.

    Article  MathSciNet  Google Scholar 

  • Kwedlo, W. (2011). “A clustering method combining differential evolution with the K-means algorithm.” Pattern Recognition Letters, Vol. 32, No. 12, pp. 1613–1621, DOI: 10.1016/j.patrec.2011.05.010.

    Article  Google Scholar 

  • Li, H. and Zhang, H. (2013). “Ant colony optimization-based multimode scheduling under renewable and nonrenewable resource constraints.” Automation in Construction, Vol. 35, pp. 431–438, DOI: 10.1016/j.autcon.2013.05.030.

    Article  Google Scholar 

  • Liao, T., Warren, P. J., Egbelu, B. R., Sarker, and Leu, S. S. (2011). “Metaheuristics for project and construction management — A state-of-the-art review.” Automation in Construction, Vo. 20, No. 5, pp. 491–505, DOI: 10.1016/j.autcon.2010.12.006.

    Article  Google Scholar 

  • Lova, A., Tormos, P., Cervantes, M., and Barber, F. (2009). “An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes.” International Journal of Production Economics, Vol. 117, No. 2, pp. 302–316, DOI: 10.1016/j.ijpe.2008.11.002.

    Article  Google Scholar 

  • Lu, M., Lam, H.-C., and Dai, F. (2008). “Resource-constrained critical path analysis based on discrete event simulation and particle swarm optimization.” Automation in Construction, Vol. 17, No. 6, pp. 670–681, DOI: 10.1016/j.autcon.2007.11.004.

    Article  Google Scholar 

  • Noman, N. and Iba, H. (2008). “Accelerating differential evolution using an adaptive local search.” Evolutionary Computation, IEEE Transactions on, Vol. 12, No. 1, pp. 107–125, DOI: 10.1109/TEVC.2007.895272.

    Article  Google Scholar 

  • Ohya, M. (1998). “Complexities and their applications to characterization of chaos.” International Journal of Theoretical Physics, Vol. 37, No. 1, pp. 495–505, DOI: 10.1023/A:1026620313483.

    Article  MathSciNet  Google Scholar 

  • Peteghem, V. V. and Vanhoucke, M. (2010). “A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem.” European Journal of Operational Research, Vol. 201, No. 2, pp. 409–418, DOI: 10.1016/j.ejor.2009.03.034.

    Article  MathSciNet  Google Scholar 

  • Price, K. V., Storn, R. M., and Lampinen, J. A. (2005). Differential evolution a practical approach to global optimization, Springer-Verlag Berlin Heidelberg 2005.

    Google Scholar 

  • Rostami, M., Moradinezhad, D., and Soufipour, A. (2014). “Improved and competitive algorithms for large scale multiple resource-constrained project-scheduling problems.” KSCE Journal of Civil Engineering, Vol. 18, No. 5, pp. 1261–1269, DOI: 10.1007/s12205-014-0401-x.

    Article  Google Scholar 

  • Sakalauskas, L. and Felinskas, G. (2006). “Optimization of resource constrained project schedules by genetic algorithm based on the job priority list.” Information Technology and Control, Vol. 35, No. 4, 412–418, DOI: 10.1.1.103.7996.

    Google Scholar 

  • Storn, R. M. and Price, K. (1997). “Differential evolution — A simple and efficient heuristic for global optimization over continuous spaces.” Journal of Global Optimization, Vol. 11, pp. 341–359, DOI: 10.1023/A:1008202821328.

    Article  MathSciNet  Google Scholar 

  • Wang, Y.-J., Zhang, J.-S., and Zhang, G.-Y. (2007). “A dynamic clustering based differential evolution algorithm for global optimization.” European Journal of Operational Research, Vol. 183, No. 1, pp. 56–73, DOI: 10.1016/j.ejor.2006.10.053.

    Article  MathSciNet  Google Scholar 

  • Wu, L., Wang, Y., and Zhou, S. (2010). “Improved differential evolution algorithm for resource-constrained project scheduling problem.” Systems Engineering and Electronics, Journal of, Vol. 21, No. 5, pp. 798–805, DOI: 10.3969/j.issn.1004-4132.2010.05.013.

    Article  Google Scholar 

  • Zhang, H. (2012). “Ant colony optimization for multimode resourceconstrained project scheduling.” Journal of Management in Engineering, Vol. 28, No. 2, pp. 150–159, DOI: 10.1061/(ASCE)ME.1943-5479.0000089.

    Article  Google Scholar 

  • Zhang, H., Tam, C. M., and Shi, J. J. (2002). “Simulation-based methodology for project scheduling.” Construction Management and Economics, Vol. 20, No. 8, pp. 667–678, DOI: 10.1080/0144619022000014088.

    Article  Google Scholar 

  • Zhang, H., Li, H., and Tam, C. (2006a). “Particle swarm optimization for resource-constrained project scheduling.” International Journal of Project Management, Vol. 24, No. 1, pp. 83–92, DOI: 10.1016/j.ijproman.2005.06.006.

    Article  Google Scholar 

  • Zhang, H., Li, H., and Tam, C. (2006b). “Permutation-based particle swarm optimization for resource-constrained project scheduling.” Journal of Computing in Civil Engineering, Vol. 20, No. 2, pp. 141–49, DOI: 10.1061/(ASCE)0887-3801(2006)20:2(141).

    Article  Google Scholar 

  • Zhang, H., Tam, C. M., and Li, H. (2006c). “Multimode project scheduling based on particle swarm optimization.” Computer-Aided Civil and Infrastructure Engineering, Vol. 21, No. 2, 93–103, DOI: 10.1111/j.1467-8667.2005.00420.x.

    Article  Google Scholar 

  • Zhang, Z. and Xu, J. (2014). “Applying rough random MODM model to resource-constrained project scheduling problem: A case study of Pubugou Hydropower Project in China.” KSCE Journal of Civil Engineering, Vol. 18, No. 5, pp. 1279–1291, DOI: 10.1007/s12205-014-0426-1.

    Article  Google Scholar 

  • Zielinski, K., Weitkemper, P., Laur, R., and Kammeyer, K. D. (2006). “Parameter study for differential evolution using a power allocation problem including interference cancellation.” In Evolutionary Computation, 2006, CEC 2006, IEEE Congress on., pp. 1857–1864, DOI: 10.1109/cec.2006.1688533.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc-Hoc Tran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, MY., Tran, DH. An efficient hybrid differential evolution based serial method for multimode resource-constrained project scheduling. KSCE J Civ Eng 20, 90–100 (2016). https://doi.org/10.1007/s12205-015-0414-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-015-0414-0

Keywords

Navigation