Advertisement

KSCE Journal of Civil Engineering

, Volume 20, Issue 2, pp 590–596 | Cite as

Comparative study on SBNR, GSBR and Anammox for combined treatment of anaerobic digester effluent

  • Fenghao Cui
  • Kyung Mo
  • Seyong Park
  • Moonil KimEmail author
Environmental Engineering

Abstract

In this study Shortcut Biological Nitrogen Removal (SBNR), Granular Sequencing Batch Reactor (GSBR), and anaerobic ammonium oxidation (Anammox) were comparatively discussed for combined treatment of anaerobic digester effluent. The experiments were carried out through operating pilot and lab scale reactors. These processes have common ground that biologically removes high strength ammonium and they are cost effective and energy efficient. The SBNR process could remove significant nitrogen from anaerobic digestion effluent without supplementation with additional carbon and alkalinity at a low C/N ratio. The aerobic granular sludge which was generated by the GSBR process demonstrated an effective simultaneous organic and ammonium removal. The Anammox process was successfully started using UASB and SBR. After 100 days, the ammonium removal exponentially increased and finally approached to around 75% in both reactors. However, the high active biomass and the long period, which are needed to start up Anammox process, limited the application of this process.

Keywords

biological wastewater treatment anaerobic digester effluent shortcut nitrogen removal aerobic granulation anammox 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adav, S. S., Lee, D., Show, K., and Tay, J. (2008). “Aerobic granular sludge: Recent advances.” Biotechnology Advances, vol. 26, no. 5, pp. 411–423, DOI:  10.1016/j.biotechadv.2008.05.002.CrossRefGoogle Scholar
  2. APHA (2005). Standard methods for the examination of water and wastewater, 21st Edn., American Public Health Association, Washington DC, USA.Google Scholar
  3. Beun, J. J., Hendriks, A., Van Loosdrecht, M. C. M., Morgenroth, E., Wilderer, P. A., and Heijnen, J.J. (1999). “Aerobic granulation in a sequencing batch reactor.” Water Research, vol. 33, no. 10, pp. 2283–2290, DOI:  10.1016/S0043-1354(98)00463-1.CrossRefGoogle Scholar
  4. Chernicharo, C. A. L. (2006). “Post-treatment options for the anaerobic treatment of domestic wastewater.” Review in Environmental Science and Bio/Technology, vol. 5, no. 1, pp. 73–92, DOI:  10.1007/s11157-005-5683-5.CrossRefGoogle Scholar
  5. Cui, F., Lee, S., and Kim, M. (2011). “Removal of organics and nutrients from food wastewater using combined thermophilic twophase anaerobic digestion and shortcut biological nitrogen removal.” Water Research, vol. 45, no. 16, pp. 5279–5286, DOI:  10.1016/j.watres.2011.07.030.CrossRefGoogle Scholar
  6. Cui, F., Park, S., and Kim, M. (2014). “Characteristics of aerobic granulation at mesophilic temperatures in wastewater treatment.” Bioresource Technology, vol. 151, pp. 78–84, DOI:  10.1016/j.biortech.2013.10.025.CrossRefGoogle Scholar
  7. Deminer, G. N. and Chen, S. (2005). “Two-phase anaerobic digestion of unscreened dairy manure.” Process Biochemistry, vol. 40, no. 11, pp. 3542–3549, DOI:  10.1016/j.procbio.2005.03.062.CrossRefGoogle Scholar
  8. Dosta, J., Fernandez, I., Vazquez-Padin, J. R., Mosquera-Corral, Campos, J. L., Mata-Alvarez, J., and Mendez, R. (2008). “Short-and longterm effects of temperature on the Anammox process.” Journal of Hazardous Materials, Vol. 154, Nos. 1–3, pp. 688–693, DOI:  10.1016/j.jhazmat.2007.10.082.CrossRefGoogle Scholar
  9. Egli, K., Fanger, U., Alvarez, J. J. P., Siegris, H., van der Meer, R. J., and Zehnder, J. B. A. (2001). “Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate.” Archives of Microbiology, vol. 175, no. 3, pp. 198–207, DOI:  10.1007/s002030100255.CrossRefGoogle Scholar
  10. Esposito, G., Frunzo, L., Giordano, A., Liotta, F., Panico, A., and Pirozzi, F. (2012). “Anaerobic co-digestion of organic wastes.” Reviews in Environmental Science Bio/Technology, vol. 11, no. 4, pp. 325–341, DOI:  10.1007/s11157-012-9277-8.CrossRefGoogle Scholar
  11. Figueroa, M., del Rio, A. V., Campos, J. L., Mosquera-Corral, A., and Mendez, R. (2011). “Treatment of high loaded swine slurry in an aerobic granular reactor.” Water Science and Technology, vol. 63, no. 9, pp. 1808–1814, DOI:  10.2166/wst.2011.381.CrossRefGoogle Scholar
  12. Gao, D. W., Liu, L., Liang, H., and Wu, W. M. (2011). “Aerobic granular sludge: Characterization, mechanism of granulation and application to wastewater treatment.” Critical Reviews in Biotechnology, vol. 31, no. 2, pp. 137–152, DOI:  10.3109/07388551.2010.497961.CrossRefGoogle Scholar
  13. Hellinga, C., Schellen, A. A. J. C., Mulder, J. W., van Loosdrecht, M. C. M., and Heijnen, J. J. (1998). “The SHARON process: An innovative method for nitrogen removal from ammonium-rich waste water.” Water Science and Technology, vol. 37, no. 9, pp. 135–142, DOI:  10.1016/S0273-1223(98)00281-9.CrossRefGoogle Scholar
  14. Inizan, M., Freval, A., Cigana, J., and Meinhold, J. (2011). “Aerobic granulation in a Sequencing Batch Reactor (SBR) for industrial wastewater treatment.” Water Science and Technology, Vol. 52, Nos. 10–11, pp. 335–343, DOI:  10.2175/193864703784756057.Google Scholar
  15. Jardin, N. and Hennerkes, J. (2012). “Full-scale experience with the deammonification process to treat high strength sludge water-a case study.” Water Science and Technology, vol. 65, no. 3, pp. 447–455, DOI:  10.2166/wst.2012.867.CrossRefGoogle Scholar
  16. Mata-Alvarez, J., Mace, S., and Llabres, P. (2000). “Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives.” Bioresource Technology, vol. 74, no. 1, pp. 3–16, DOI:  10.1016/S0960-8524(00)00023-7.CrossRefGoogle Scholar
  17. Morse, G. K., Brett, S. W., Guy, J. A., and Lester, J. N. (1998). “Review: Phosphorus removal and recovery technologies.” Science of the Total Environment, vol. 212, no. 1, pp. 69–81, DOI:  10.1016/S0048-9697(97)00332-X.CrossRefGoogle Scholar
  18. Mosquera-Corral, A., Gonzalez, F., Campos, J. L., and Mendez, R. (2005). “Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds.” Process Biochemistry, vol. 40, no. 9, pp. 3109–3118, DOI:  10.1016/j.procbio.2005.03.042.CrossRefGoogle Scholar
  19. Nielsen, P. H. (1996). “Adsorption of ammonia to activated sludge.” Water Research, vol. 30, no. 3, pp. 762–764, DOI:  10.1016/0043-1354(95)00222-7.CrossRefGoogle Scholar
  20. Sinha, B. and Annachhatre, A. P. (2007). “Partial nitrification-operational parameters and microorganisms involved.” Reviews in Environmental Science Bio/Technology, vol. 6, no. 4, pp. 285–313, DOI:  10.1007/s11157-006-9116-x.CrossRefGoogle Scholar
  21. Spagni, A., Marsili-Libelli, S., and Lavagnolo, M. C. (2008). “Optimisation of sanitary landfill leachate treatment in a sequencing batch reactor.” Water Science and Technology, vol. 58, no. 2, pp. 337–343, DOI:  10.2166/wst.2008.399.CrossRefGoogle Scholar
  22. Strous, M., Fuerst, J. A., Kramer, E. H. M., Longemann, S., Muyzer, G., van de Pas-Schoonen, K. T., Webb, R., Kuenen, J. G., and Jetten, M. S. M. (1999). “Missing lithotroph identified as new planctomycete.” Nature, vol. 400, pp. 446–449, DOI:  10.1038/22749.CrossRefGoogle Scholar
  23. Strous, M., Heijnen, J. J., Kuenen, J. G., and Jetten, M. S. M. (1998). “The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms.” Applied Microbiology and Biotechnology, vol. 50, no. 5, pp. 589–596, DOI:  10.1007/s002530051340.CrossRefGoogle Scholar
  24. Surmacz-Gorska, J., Cichon, A., and Miksch, K. (1997). “Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification.” Water Science and Technology, vol. 36, no. 10, pp. 73–78, DOI:  10.1016/S0273-1223(97)00000-0.CrossRefGoogle Scholar
  25. Tang, C., Zheng, P., Wang, C., Mahmood, Q., Zhang, J., Chen, X., Zhang, L., and Chen J. (2011). “Performance of high-loaded ANAMMOX UASB reactors containing granular sludge.” Water Research, vol. 45, no. 1, pp. 135–144, DOI:  10.1016/j.watres.2010.08.018.CrossRefGoogle Scholar
  26. Terada, A., Zhou, S., and Hosomi, M. (2011). “Presence and detection of anaerobic ammonium-oxidizing (anammox) bacteria and appraisal of anammox process for high-strength nitrogenous wastewater treatment: A review.” Chemical Technology and Environmental Policy, vol. 13, no. 6, pp. 759–781, DOI:  10.1007/s10098-011-0355-3.CrossRefGoogle Scholar
  27. Van der Star, W. R. L., Abma, W. R., Blommers, D., Mulder, J. W., Tokutomi, T., Strous, M., Picioreanu, C., and Van Loosdrecht, M. C. M. (2007). “Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam.” Water Research, vol. 41, no. 18, pp. 4149–4163, DOI:  10.1016/j.watres.2007.03.044.CrossRefGoogle Scholar
  28. Van Dongen, U., Jetten, M. S. M., and van Loosdrecht, M. C. M. (2001). “The SHARON-Anammox process for treatment of ammonium rich wastewater.” Water Science and Technology, vol. 44, no. 1, pp. 153–160.Google Scholar
  29. Vlaeminck, S. E., Cloetens, L. F. F., Carballa, M., Boon, N., and Verstraete, W. (2008). “Granular biomass capable of partial nitritation and anammox.” Water Science and Technology, vol. 58, no. 5, pp. 1113–1120, DOI:  10.2166/wst.2008.731.CrossRefGoogle Scholar
  30. Wett, B. (2006). “Solved upscaling problems for implementing deammonification of rejection water.” Water Science and Technology, vol. 54, no. 12, pp. 121–128, DOI:  10.2166/wst.2006.413.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Fenghao Cui
    • 1
  • Kyung Mo
    • 1
  • Seyong Park
    • 1
  • Moonil Kim
    • 1
    Email author
  1. 1.Dept. of Civil and Environmental EngineeringHanyang UniversityAnsanKorea

Personalised recommendations