Skip to main content

Optimum mix ratio for carbon nanotubes in cement mortar


Cementitious composites have high compressive strength and modulus of elasticity, but relatively low tensile strength, toughness and ductility. They are amenable to enhancement through nanotechnology due to the physical behavior and size of hydration products. Carbon Nanotube (CNT) is a very efficient reinforcing agent due to its extremely high aspect ratio and ultra-high strength. So, there is a high potential to utilize CNT in producing new cement based composite materials. In this study, a parametric experimental investigation was undertaken to determine optimum mix dosage of CNT for cement mortar. Different dosage rates of surface treated Multi-Walled Nanotubes (MWNT), water/cement ratios and plasticizer amounts (as surfactant for the MWNT) were investigated through compressive and flexural strength determinations. A mixing technique was proposed to address the issues related to dispersion of nanotubes within the cement matrix. The proposed mixing technique and design mix significantly enhanced the compressive and flexural strengths, as compared to control samples with no MWNT.

This is a preview of subscription content, access via your institution.


  • Agullo, V. J., Ligero, V. C., Rico, D. P., Casas, M. J. G., Martinez, A. G., Royo, J. M. M., and Moreno, J. G. (2009). “Mortar and concrete reinforced with nanomaterials.” Nanotechnology in Construction Vol. 3, pp. 383–388, DOI: 10.1007/978-3-642-00980-8_52.

    Google Scholar 

  • ASTM C 109-07 (2008). Standard test method for compressive strength of hydraulic-cement mortars, West Conshohocken, PA.

    Google Scholar 

  • ASTM C 348-02 (2008). Standard test method for flexural strength of hydraulic-cement mortars, West Conshohocken, PA.

    Google Scholar 

  • ASTM C494/C494M-10 (2010). Standard specification for chemical admixtures for concrete, West Conshohocken, PA.

    Google Scholar 

  • ASTM C1017/C1017M-07 (2010). Standard specification for chemical admixture for use in producing flowing concrete, West Conshohocken, PA.

    Google Scholar 

  • Cwirzen, A., Habermehl-Cwirzen, K., and Penttala, V. (2008). “Surface decoration of carbon nanotubes and mechnical properties of cement/carbon nanotube composites.” Adv. Cem. Res., Vol. 20, pp. 65–73, DOI: 10.1680/adcr.2008.20.2.65.

    Article  Google Scholar 

  • Gay, C. and Sanchez, F. (2010). “Performance of carbon nanofibercement composites with a high-range water reducer.” Journal of the Transportation Research Board, No. 2142, 109–113, DOI: 10.3141/2142-16.

    Article  Google Scholar 

  • Han, B., Yu, X., and Kwon, E. (2009). “A self-sensing carbon nanotube/cement composite for traffic monitoring.” Nanotechnology, Vol. 20, No. 44, DOI: 10.1088/0957-4484/20/44/445501.

    Google Scholar 

  • Han, B., Yu, X., and Ou, Z. (2011). “Multifunctional and smart carbon nanotube reinforced cement-based materials.” Nanotechnology in Civil Infrastructure: A Paradigm Shift, Springer, pp. 1–47.

    Chapter  Google Scholar 

  • Han, B., Yang, Z., Shi, X., and Yu, X. (2013). “Transport properties of carbon-nanotube/cement composites.” Journal of Materials Engineering and Performance, Vol. 22, pp. 184–189, DOI: 10.1007/s11665-012-0228-x.

    Article  Google Scholar 

  • Konsta-Gdoutos, M. S., Metaxa, Z. S., and Shah, S. P. (2010). “Highly dispersed carbon nanotube reinforced cement based materials.” Cement and Concrete Research, Vol. 40, pp. 1052–1059, DOI: 10.1016/j.cemconres.2010.02.015.

    Article  Google Scholar 

  • Li, G. Y., Wang, P. M., and Zhao, X. (2007). “Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites.” Cement & Concrete Composites, Elsevier, Vol. 29, No. 5, pp. 377–382, DOI: 10.1016/j.cemconcomp.2006.12.011.

    Article  MathSciNet  Google Scholar 

  • Li, H., Xiao, H., Yuan, J., and Ou, J. (2004). “Microstructure of cement mortar with nano-particles.” Composites: Part B, Vol. 35, pp. 185–189, DOI: 10.1016/S1359-8368(03)00052-0.

    Article  Google Scholar 

  • Maile, A. and Huang, C. P. (2006). The chemistry and physics of nanocement, NSF-REU, University of Delaware.

    Google Scholar 

  • Makar, J. M. and Chan, G. W. (2009). “Growth of cement hydration products on single walled carbon nanotubes.” Journal of the American Ceramic Society, Vol. 92, Issue 6, pp. 1303–1310, DOI: 10.1111/j.1551-2916.2009.03055.x.

    Article  Google Scholar 

  • Makar, J., Margeson, J., and Luh, J. (2005). “Carbon nanotube/cement composites-early results and potential application.” Proceedings of the 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications, Vancouver, B.C., Aug. 22–24, pp. 1–10.

    Google Scholar 

  • Manzur, T. and Yazdani, N. (2010). “Strength enhancement of cement mortar with carbon nanotubes: Early results and potential.” Journal of the Transportation Research Board, No. 2142, pp. 102–108, DOI: 10.3141/2142-15.

    Article  Google Scholar 

  • Musso, S., Tulliani, J.-M., Ferro, G., and Tagliaferro, A. (2009). “Influence of carbon nanotubes structure on the mechanical behavior of cement composites.” Composites Science and Technology, Vol. 69, No. 11–12, pp. 1985–1990, DOI: 10.1016/j.compscitech.2009.05.002.

    Article  Google Scholar 

  • Parveen, S., Rana, S., and Fangueiro, R. (2013). “A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites.” Journal of Nanomaterials, Hindawi Publishing Corporation, Vol. 2013, Article ID 710175, DOI: 10.1155/2013/710175.

  • Salvetat, J.-P., Bonard, J.-M., Thomson, N. H., Kulik, A. J., Forró, L., Benoit, W., and Zuppiroli, L. (1999). “Mechanical properties of carbon nanotubes.” Applied Physics A, Vol. 69, pp. 255–260, DOI: 10.1007/s003399900114.

    Article  Google Scholar 

  • Walters, D. A., Ericson, L. M., Casavant, M. J., Liu, J., Colbert, D. T., Smith, K. A., and Smalley, R. E. (1999). “Elastic strain of freely suspended single-wall carbon nanotube ropes.” App. Phys. Let., Vol. 74, pp. 3803–3805, DOI: 10.1063/1.124185.

    Article  Google Scholar 

  • Yazdanbakhsh, A., Grasley, Z., Tyson, B., and Abu Al-Rub, R. K. (2010). “Distribution of carbon nanofibers and nanotubes in cementitious composites.” Journal of the Transportation Research Board, No. 2142, 89–95, DOI: 10.3141/2142-13.

    Article  Google Scholar 

  • Yu, M. F., Files, B. S., Arepaali, S., and Ruoff, R. S. (2000). “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties.” Phys. Ref. Lett., Vol. 84, No. 24, pp. 5552–5555, DOI: 10.1103/PhysRevLett.84.5552.

    Article  Google Scholar 

  • Zheng, L. X., O’Connell, M. J., Doorn, S. K., Liao, X. Z., Zhao, Y. H., Akhadov, E. A., Hoffbauer, M. A., Roop, B. J., Jia, Q. X., Dye, R. C., Peterson, D. E., Huang, S. M., Liu, J., and Zhu, Y. T. (2004). “Ultra long single-wall carbon nanotubes.” Nature Materials, Vol. 3, 673–676, DOI: 10.1038/nmat1216.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Tanvir Manzur.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manzur, T., Yazdani, N. Optimum mix ratio for carbon nanotubes in cement mortar. KSCE J Civ Eng 19, 1405–1412 (2015).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • nanotechnology
  • cement mortar
  • carbon nanotubes
  • dispersion technique
  • tensile strength
  • ductility