Agullo, V. J., Ligero, V. C., Rico, D. P., Casas, M. J. G., Martinez, A. G., Royo, J. M. M., and Moreno, J. G. (2009). “Mortar and concrete reinforced with nanomaterials.” Nanotechnology in Construction Vol. 3, pp. 383–388, DOI: 10.1007/978-3-642-00980-8_52.
Google Scholar
ASTM C 109-07 (2008). Standard test method for compressive strength of hydraulic-cement mortars, West Conshohocken, PA.
Google Scholar
ASTM C 348-02 (2008). Standard test method for flexural strength of hydraulic-cement mortars, West Conshohocken, PA.
Google Scholar
ASTM C494/C494M-10 (2010). Standard specification for chemical admixtures for concrete, West Conshohocken, PA.
Google Scholar
ASTM C1017/C1017M-07 (2010). Standard specification for chemical admixture for use in producing flowing concrete, West Conshohocken, PA.
Google Scholar
Cwirzen, A., Habermehl-Cwirzen, K., and Penttala, V. (2008). “Surface decoration of carbon nanotubes and mechnical properties of cement/carbon nanotube composites.” Adv. Cem. Res., Vol. 20, pp. 65–73, DOI: 10.1680/adcr.2008.20.2.65.
Article
Google Scholar
Gay, C. and Sanchez, F. (2010). “Performance of carbon nanofibercement composites with a high-range water reducer.” Journal of the Transportation Research Board, No. 2142, 109–113, DOI: 10.3141/2142-16.
Article
Google Scholar
Han, B., Yu, X., and Kwon, E. (2009). “A self-sensing carbon nanotube/cement composite for traffic monitoring.” Nanotechnology, Vol. 20, No. 44, DOI: 10.1088/0957-4484/20/44/445501.
Google Scholar
Han, B., Yu, X., and Ou, Z. (2011). “Multifunctional and smart carbon nanotube reinforced cement-based materials.” Nanotechnology in Civil Infrastructure: A Paradigm Shift, Springer, pp. 1–47.
Chapter
Google Scholar
Han, B., Yang, Z., Shi, X., and Yu, X. (2013). “Transport properties of carbon-nanotube/cement composites.” Journal of Materials Engineering and Performance, Vol. 22, pp. 184–189, DOI: 10.1007/s11665-012-0228-x.
Article
Google Scholar
Konsta-Gdoutos, M. S., Metaxa, Z. S., and Shah, S. P. (2010). “Highly dispersed carbon nanotube reinforced cement based materials.” Cement and Concrete Research, Vol. 40, pp. 1052–1059, DOI: 10.1016/j.cemconres.2010.02.015.
Article
Google Scholar
Li, G. Y., Wang, P. M., and Zhao, X. (2007). “Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites.” Cement & Concrete Composites, Elsevier, Vol. 29, No. 5, pp. 377–382, DOI: 10.1016/j.cemconcomp.2006.12.011.
Article
MathSciNet
Google Scholar
Li, H., Xiao, H., Yuan, J., and Ou, J. (2004). “Microstructure of cement mortar with nano-particles.” Composites: Part B, Vol. 35, pp. 185–189, DOI: 10.1016/S1359-8368(03)00052-0.
Article
Google Scholar
Maile, A. and Huang, C. P. (2006). The chemistry and physics of nanocement, NSF-REU, University of Delaware.
Google Scholar
Makar, J. M. and Chan, G. W. (2009). “Growth of cement hydration products on single walled carbon nanotubes.” Journal of the American Ceramic Society, Vol. 92, Issue 6, pp. 1303–1310, DOI: 10.1111/j.1551-2916.2009.03055.x.
Article
Google Scholar
Makar, J., Margeson, J., and Luh, J. (2005). “Carbon nanotube/cement composites-early results and potential application.” Proceedings of the 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications, Vancouver, B.C., Aug. 22–24, pp. 1–10.
Google Scholar
Manzur, T. and Yazdani, N. (2010). “Strength enhancement of cement mortar with carbon nanotubes: Early results and potential.” Journal of the Transportation Research Board, No. 2142, pp. 102–108, DOI: 10.3141/2142-15.
Article
Google Scholar
Musso, S., Tulliani, J.-M., Ferro, G., and Tagliaferro, A. (2009). “Influence of carbon nanotubes structure on the mechanical behavior of cement composites.” Composites Science and Technology, Vol. 69, No. 11–12, pp. 1985–1990, DOI: 10.1016/j.compscitech.2009.05.002.
Article
Google Scholar
Parveen, S., Rana, S., and Fangueiro, R. (2013). “A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites.” Journal of Nanomaterials, Hindawi Publishing Corporation, Vol. 2013, Article ID 710175, DOI: 10.1155/2013/710175.
Salvetat, J.-P., Bonard, J.-M., Thomson, N. H., Kulik, A. J., Forró, L., Benoit, W., and Zuppiroli, L. (1999). “Mechanical properties of carbon nanotubes.” Applied Physics A, Vol. 69, pp. 255–260, DOI: 10.1007/s003399900114.
Article
Google Scholar
Walters, D. A., Ericson, L. M., Casavant, M. J., Liu, J., Colbert, D. T., Smith, K. A., and Smalley, R. E. (1999). “Elastic strain of freely suspended single-wall carbon nanotube ropes.” App. Phys. Let., Vol. 74, pp. 3803–3805, DOI: 10.1063/1.124185.
Article
Google Scholar
Yazdanbakhsh, A., Grasley, Z., Tyson, B., and Abu Al-Rub, R. K. (2010). “Distribution of carbon nanofibers and nanotubes in cementitious composites.” Journal of the Transportation Research Board, No. 2142, 89–95, DOI: 10.3141/2142-13.
Article
Google Scholar
Yu, M. F., Files, B. S., Arepaali, S., and Ruoff, R. S. (2000). “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties.” Phys. Ref. Lett., Vol. 84, No. 24, pp. 5552–5555, DOI: 10.1103/PhysRevLett.84.5552.
Article
Google Scholar
Zheng, L. X., O’Connell, M. J., Doorn, S. K., Liao, X. Z., Zhao, Y. H., Akhadov, E. A., Hoffbauer, M. A., Roop, B. J., Jia, Q. X., Dye, R. C., Peterson, D. E., Huang, S. M., Liu, J., and Zhu, Y. T. (2004). “Ultra long single-wall carbon nanotubes.” Nature Materials, Vol. 3, 673–676, DOI: 10.1038/nmat1216.
Article
Google Scholar