Skip to main content
Log in

Stabilization mechanism for sands treated with organic acids

  • Geotechnical Engineering
  • Technical Note
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Contractors tout the use of organic acids for soil improvement even though the underlying stabilization mechanism is not well understood. Strength, stiffness, and chemical tests were conducted on two sandy materials treated with a commercial organic acid mixture to evaluate the effectiveness and stabilization mechanism involved. After curing for 28 days, tests show a moderate increase in unconfined compressive strength, approximately two-fold, and a large increase in constrained modulus, approximately one order of magnitude. X-ray diffraction and chemical analyses do not suggest traditional pozzolanic reactions as the source of improvements in the treated specimens. Test results suggest the organic acid solution promotes microbe growth and thus an increase in organic matter within the sand skeleton. This reduction in void space increases relative density to levels above the maximum unit weight of the host sand, resulting in higher soil strength and stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbulut, S. and Saglamer, A. (2003) “Evaluation of fly ash and clay in soil grouting.” Proc. 3rd International Specialty Conf. on Grouting and Ground Treatment, GSP 120, ASCE, New Orleans, Louisiana, pp. 1192–1199.

    Chapter  Google Scholar 

  • Anagnostopoulos, C. A. and Papaliangas, T. T. (2012). “Experimental investigation of epoxy resin and sand mixes.” J. Geotech. Geoenviron. Eng., Vol. 138, No. 7, pp. 841–849.

    Article  Google Scholar 

  • ASTM (2001). Standard test methods for maximum index density and unit weight of soils using a vibratory table, D4253, West Conshohoken, PA, USA.

    Google Scholar 

  • ASTM (2006). Standard test methods for minimum index density and unit weight of soils and calculation of relative density, D5254, West Conshohoken, PA, USA.

    Google Scholar 

  • ASTM (2008). Standard guide for evaluating effectiveness of admixtures for soil stabilization, D4609, West Conshohoken, PA, USA.

    Google Scholar 

  • ASTM (2010). Standard test methods for specific gravity of soil solids by water pycnometer, D854, West Conshohoken, PA, USA.

    Google Scholar 

  • Baez, J. I. and Henry, J. F. (1993). “Reduction of liquefaction potential by compaction grouting at pinoplis dam, south carolina.” Proc. Geotechnical Practice in Dam Rehabilitation, GSP 35, ASCE, New York, pp. 430–466.

    Google Scholar 

  • Baxter, C. and Mitchell, J. (2004). “Experimental study on the aging of sands.” J. Geotech. Geoenviron. Eng., ASCE, Vol. 130, No. 10, pp. 1051–1062.

    Article  Google Scholar 

  • Chatterjee, A. J. (2011). “Indian fly ashes: Their characteristics and potential for mechanochemical activation for enhanced usability.” J. Mater. Civ. Eng., ASCE, Vol. 23, No. 6, pp. 783–788.

    Article  Google Scholar 

  • Dejong, J. T., Fritzges, M. B., and Nüsslein, K. (2006). “Microbial induced cementation to control sand response to undrained shear.” J. Geotech. Geo environ. Eng., ASCE, Vol. 132, No. 11, pp. 1381–1392.

    Article  Google Scholar 

  • Dobson, T. (1987). “Case histories of the vibro systems to minimize the risk of liquefaction.” Proc. Soil Improvement: A Ten Year Update, GSP 12, ASCE, pp. 167–183.

    Google Scholar 

  • Dombrowski, F. J., Ramme, B. W., Okwadha, G. D. O., and Kollakowsky, D. (2010). “Evaluation of surface water runoff from fly ash-stabilized and nonstabilized soil surfaces.” J. Env. Eng., ASCE, Vol. 136, No. 9, pp. 939–951.

    Article  Google Scholar 

  • Dove, J. E., Shillaber, C. M., Becker, T. S., Wallace, A. F., and Dove, P. M. (2010). “Biologically inspired silicification process for improving mechanical properties of sand.” J. Geotech. Geoenviron. Eng., ASCE, Vol. 137, No. 10, pp.949–957.

    Article  Google Scholar 

  • D’Appolonia, D. J., Whitman, R. V., and D’Appolonia, E. (1969). “Sand compaction with vibratory rollers.” J. Soil Mech. Found. Div., ASCE, Vol. 95, No. SM1, pp. 263–284.

    Google Scholar 

  • El-Kelesh, A. M., Matsui, T., and Tokida, K. (2012). “Field investigation into effectiveness of compaction grouting.” J. Geotech. Geoenviron. Eng., ASCE, Vol. 138, No. 4, pp. 451–460.

    Article  Google Scholar 

  • Farouk, A., Lamboj, L., and Kos, J. (2004). “Influence of matric suction on the shear strength behavior of unsaturated sand.” Acta Polytechnica, Vol. 44, No. 4, pp. 11–17.

    Google Scholar 

  • Harder, L. F., Jr., Hammond, W. D., and Ross, P. S. (1984). “Vibroflotation compaction at thermalito afterbay.” J. Geotech. Eng., ASCE, Vol. 110, No. 1, pp. 57–70.

    Article  Google Scholar 

  • Hobbie, J. E., Daley, R. J., and Jasper, S. (1977). “Use of nuclepore filters for counting bacteria by fluorescence microscopy.” Appl. Environ. Microbiol., Vol. 33, No. 5, 1225–1228.

    Google Scholar 

  • Kazemian, S., Huat, B. B. K., Prasad, A., and Barghchi, M. (2010). “A review of stabilization of soft soils by injection of chemical grouting.” Aust. J. Basic Appl. Sci., Vol. 4, No. 12, pp. 5862–5868.

    Google Scholar 

  • Kerwin, S. and Stone, J. (1997). “Liquefaction failure and remediation: king harbor redondo beach, california.” J. Geotech. Geoenviron. Eng., Vol. 123, No. 8, pp. 760–769.

    Article  Google Scholar 

  • Lin, D. F., Lin, K. L., Hung, M. J., and Luo, H. L. (2007). “Sludge ash/hydrated lime on the geotechnical properties of soft soil.” J. Hazard. Mater., Vol. 145, Nos. 1–2, pp. 58–64.

    Article  Google Scholar 

  • Liu, R., Durham, S. A., Rens, K. L., and Ramaswami, A. (2012). “Optimization of cementitious material content for sustainable concrete mixtures.” J. Mater. Civ. Eng., ASCE, Vol. 24, No. 6, pp. 745–753.

    Article  Google Scholar 

  • Lukas, R. G. (1986). Dynamic compaction for highway construction, vol. 1: design and construction guidelines, Report FHWA/RD-86/133, Federal Highway Administration, Washington DC.

    Google Scholar 

  • Mayne, P. W., Jones, J. S., and Dumas, J. C. (1984). “Ground response to dynamic compaction.” J. Geotech. Eng., ASCE, Vol. 110, No. 6, pp. 757–774.

    Article  Google Scholar 

  • Miller, E. A. and Roycroft, G. A. (2004). “Compaction grouting test program for liquefaction control.” J. Geotech. Geoenviron. Eng., ASCE, Vol. 130, No. 4, pp. 355–361.

    Article  Google Scholar 

  • Mitchell, J. K. (1981). “State of the art — soil improvement.” Proc. 10 th ICSMFE, Stockholm, Vol. 4, pp. 509–565.

    Google Scholar 

  • Mitchell, J. K. and Wentz, F. L. (1991). Performance of improved ground during the loma prieta earthquake, Report UCB/EERC-91/12, Earthquake Engineering Research Center, University of California, Berkeley.

    Google Scholar 

  • Moayed, R. Z. and Naeini, S. A. (2012). “Improvement of loose sandy soil deposits using micropiles.” KSCE Journal of Civil Engineering, KSCE, Vol. 16, No. 3, pp. 334–340.

    Article  Google Scholar 

  • Mohanty, S. and Chugh, Y. (2006). “Postconstruction environmental monitoring of a fly ash-based road subbase.” Pract. Period. Struct. Des. Constr., ASCE, Vol. 11, No. 4, pp. 238–246.

    Article  Google Scholar 

  • Mooney M. A. and Rinehart R. V. (2009). “In situ soil response to vibratory loading and its relationship to roller-measured soil stiffness.” J. Geotech. Geoenviron. Eng., ASCE, Vol. 135, No. 8, pp. 1022–1031.

    Article  Google Scholar 

  • Muhunthan, B. and Sariosseiri, F. (2008). Interpretation of geotechnical properties of cement treated soils, Report WA-RD 715.1, Washington State Department of Transportation, p. 155.

    Google Scholar 

  • Poulos, S. J. and Hed, A. (1973). “Density measurements in a hydraulic fill.” Evaluation of Relative Density and Its Role in Geotechnical Projects Involving Cohesionless Soils, STP 523, ASTM, pp. 402–424.

    Google Scholar 

  • Rollins, K. M. and Kim, J. (2010). “Dynamic compaction of collapsible soils based on u.s. case histories.” J. Geotech. Geoenviron. Eng., ASCE, Vol. 136, No. 9, pp. 1178–1186.

    Article  Google Scholar 

  • Scholen, D. E. (1992). Nonstandard stabilizers, Report FHWA-FLP-92-011, Federal Highway Administration, Washington DC.

    Google Scholar 

  • Shimada, K. (1998). “Effect of matric suction on shear characteristics of unsaturated fraser river sand.” J. Faculty Env. Sci. Tech., Okayama University, Vol. 3, No. 1, pp. 127–134.

    Google Scholar 

  • Slocombe, B. C., Bell, A. L., and Baez, J. I. (2000). “The densification of granular soils using vibro methods.” Geotechnique, Vol. 50, No. 6, pp. 715–725.

    Article  Google Scholar 

  • Sylvia, D. M., Fuhrmann, J. J., Hartel, P. G., and Zuberer, D. A. (2005). Principles and applications of soil microbiology, Pearson Prentice-Hall, Upper Saddle River, N.J.

    Google Scholar 

  • Townsend, F. C. (1973). “Comparisons of vibrated density and standard compaction tests on sand with varying amounts of fines.” Evaluation of Relative Density and Its Role in Geotechnical Projects Involving Cohesionless Soils, STP 523, ASTM, pp. 348–363.

    Google Scholar 

  • Van Paassen, L. A., Ghose, R., van der Linden, T. J. M., van der Star, W. R. L., and van Loosdrecht, M. C. M. (2010). “Quantifying biomediated groundiImprovement by ureolysis: Large-scale biogrout experiment.” J. Geotech. Geoenviron. Eng., ASCE, Vol. 136, No. 12, pp. 1721–1728.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Yee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yee, E., Lee, J., Kim, Y. et al. Stabilization mechanism for sands treated with organic acids. KSCE J Civ Eng 18, 1001–1008 (2014). https://doi.org/10.1007/s12205-014-0498-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-014-0498-y

Keywords

Navigation