Skip to main content
Log in

Multi-reservoir optimization for hydropower production using NLP technique

  • Water Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Deriving the optimal operational rules for a multi-reservoir system serving various purposes like irrigation, multiple hydropower plants and flood control are complex. In the present study, such a multi-reservoir system with multiple hydropower plants are optimized for maximizing the hydropower production and satisfying the irrigation demands using a Non-linear Programming (NLP) technique. The developed NLP model has been applied to Koyna Hydro-Electric Project (KHEP) for maximizing the hydropower production and solved for three different dependable inflow scenarios under various operating policies. The complexity of the problem is such that the power releases and irrigation releases are in opposite direction and are non-commensurate. The total annual power production, monthly power production and the end of the month storage plots are compared for different inflows and operating policies. From the study, it is found that hydropower production can be increased to a minimum of 22% by slightly relaxing the tribunal constraint on releases towards the western side. The optimal releases from Policy 3 are further evaluated using a simulation model. The simulation result shows that the optimal releases have performed satisfactorily over long period of operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ailing, L. (2004). “A study on the large-scale system decomposition — coordination method used in optimal operation of a hydroelectric system.” Water International, Vol. 29, No. 2, pp. 228–231, DOI: 10.1080/02508060408691772.

    Article  Google Scholar 

  • Arnold, E., Tatjewski, P., and Wołochowicz, P. (1994). “Two methods for large-scale nonlinear optimization and their comparison on a case study of hydropower optimization.” Journal of Optimization Theory and Applications, Vol. 81, No. 2, pp. 221–248, DOI: 10.1007/BF02191662.

    Article  MATH  MathSciNet  Google Scholar 

  • Arunkumar, R. and Jothiprakash, V. (2012). “Optimal reservoir operation for hydropower generation using non-linear programming model.” Journal of The Institution of Engineers (India): Series A, Vol. 93, No. 2, pp. 111–120, DOI: 10.1007/s40030-012-0013-8.

    Article  Google Scholar 

  • Barros, M. T. L., Tsai, F. T. C., Yang, S. L., Lopes, J. E. G., and Yeh, W. W-G. (2003). “Optimization of large-scale hydropower system operations.” Journal of Water Resources Planning and Management, Vol. 129, No. 3, pp. 178–188, DOI: 10.1061/(ASCE)0733-9496(2003)129:3(178).

    Article  Google Scholar 

  • Barros, M. T. L., Zambon, R. C., Lopes, J. E. G., Barbosa, P. S. F., Francato, A. L. F., and Yeh, W. W-G. (2008). “Model to optimize large hydrothermal system operation considering water and environment sustainability.” Proc., World Environmental and Water Resources Congress 2008, American Society of Civil Engineers, Reston, VA, pp. 1–10, DOI: 10.1061/40976(316)590.

    Chapter  Google Scholar 

  • Barros, M. T. L., Zambon, R. C., Lopes, J. E. G., Barbosa, P. S. F., Francato, A. L. F., and Yeh, W. W-G. (2009). “Impacts of the upstream storage reservoirs on itaipu hydropower plant operation.” Proc., World Environmental and Water Resources Congress 2009 Great Rivers, ASCE, Kansas City, pp. 4938–4946, DOI: 10.1061/41036(342)498.

    Google Scholar 

  • Brandão, J. L. B. (2010). “Performance of the equivalent reservoir modeling technique for multi-reservoir hydropower systems.” Water Resources Management, Vol. 24, No. 12, pp. 3101–3114, DOI: 10.1007/s11269-010-9597-9.

    Article  Google Scholar 

  • Devamane, M. G., Jothiprakash, V., and Mohan, S. (2006). “Non-linear programming model for multipurpose multi-reservoir operation.” Hydrology Journal, Vol. 29, Nos. 3–4, pp. 33–46.

    Google Scholar 

  • Gagnon, C. R., Hicks, R. H., Jacoby, S. L. S., and Kowalik, J. S. (1974). “A nonlinear programming approach to a very large Hydroelectric system optimization.” Mathematical Programming, Vol. 6, No. 1, pp. 28–41, DOI: 10.1007/BF01580220.

    Article  MATH  MathSciNet  Google Scholar 

  • Jothiprakash, V., and Shanthi, G. (2009). “Comparison of policies derived from stochastic dynamic programming and genetic algorithm models.” Water Resources Management, Vol. 23, No. 8, pp. 1563–1580, DOI: 10.1007/s11269-008-9341-x.

    Article  Google Scholar 

  • KHEP (2005). Koyna hydro electric project stage — IV, Irrigation Department, Government of Maharashtra, India.

    Google Scholar 

  • KWDT (2010). Krishna water disputes tribunal: The report of the krishna water disputes tribunal with the decision, Ministry of Water Resources, Government of India. New Delhi.

    Google Scholar 

  • Liu, S., Wang, J., and Liu, Z. (2008). “Short-term hydropower optimal scheduling of multireservoir system using a decomposition approach.” Fourth International Conference on Natural Computation, IEEE, pp. 565–570, DOI: 10.1109/ICNC.2008.468.

    Google Scholar 

  • Loucks, D. P., Stedinger, J. R., and Haith, D. A. (1981). Water resources systems planning and analysis, Prentice Hall Inc, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Momoh, J. A., El-Hawary, M. E., and Adapa, R. (1999a). “A review of selected optimal power flow literature to 1993 Part I: Nonlinear and quadratic programming approaches.” IEEE Transactions on Power Systems, Vol. 14, No. 1, pp. 96–104, DOI: 10.1109/59.744492.

    Article  Google Scholar 

  • Momoh, J. A., El-Hawary, M. E., and Adapa, R. (1999b). “A review of selected optimal power flow literature to 1993 Part II: Newton, linear programming and interior point methods.” IEEE Transactions on Power Systems, Vol. 14, pp. 1, pp. 105–111, DOI: 10.1109/59.744495.

    Article  Google Scholar 

  • Moosavian, S. A. A., Ghafari, A., Salimi, A., and Abdi, N. (2008). “Nonlinear multiobjective optimization for control of hydropower plants network.” ASME International Conference on Advanced Intelligent Mechatronics, IEEE, pp. 1278–1283, DOI: 10.1109/AIM.2008.4601846.

    Google Scholar 

  • Mujumdar, P. P. and Nirmala, B. (2007). “A bayesian stochastic optimization model for a multi-reservoir hydropower system.” Water Resources Management, Vol. 21, No. 9, pp. 1465–1485, DOI: 10.1007/s11269-006-9094-3.

    Article  Google Scholar 

  • Peng, C. S. and Buras, N. (2000). “Dynamic operation of a surface water resources system.” Water Resources Research, Vol. 36, No. 9, pp. 41–60, DOI: 10.1029/2000WR900169.

    Article  Google Scholar 

  • Simonovic, S. P. and Srinivasan, R. (1993). “Explicit stochastic approach for planning the operations of reservoirs for hydropower production.” Extreme Hydrological Events: Precipitation, Floods and Droughts, Proceedings of the Yokohama Symposium, pp. 349–349.

    Google Scholar 

  • Sinha, A., Rao, B., and Bischof, C. (1999). “Nonlinear optimization model for screening multipurpose reservoir systems. Journal of Water Resources Planning and Management, Vol. 125, No. 4, pp. 229–233, DOI: 10.1061/(ASCE)0733-9496(1999)125:4(229).

    Article  Google Scholar 

  • Sreenivasan, K. and Vedula, S. (1996). “Reservoir operation for hydropower optimization: A chance-constrained approach.” Sadhana, Vol. 21, pp. 503–510, DOI: 10.1007/BF02745572.

    Article  Google Scholar 

  • Teegavarapu, R. S. V., and Simonovic, S. P. (2000). “Short-term operation model for coupled hydropower reservoirs.” Journal of Water Resources Planning and Management, Vol. 126, No. 2, pp. 98–106, DOI: 10.1061/(ASCE)0733-9496(2000)126:2(98).

    Article  Google Scholar 

  • Tejada-Guibert, J. A., Stedinger, J. R., and Staschus, K. (1990). “Optimization of value of CVP’s hydropower production.” Journal of Water Resources Planning and Management, Vol. 116, No. 1, pp. 52–70, DOI: 10.1061/(ASCE)0733-9496(1990)116:1(52).

    Article  Google Scholar 

  • Vedula, S. and Mujumdar, P. P. (2005). Water Resources systems: Modeling techniques and analysis, Tata McGraw-Hill Publishing Company Ltd, New Delhi.

    Google Scholar 

  • Yi, J. (1998). “Mixed Integer Programming Approach to Optimal Short-term Unit Commitment for Hydropower Systems.” KSCE Journal of Civil Engineering, KSCE, Vol. 2, No. 3, pp. 335–346, DOI: 10.1007/BF02830483.

    Article  Google Scholar 

  • Zahraie, B., and Karamouz, M. (2004). “Hydropower reservoirs operation: A time decomposition approach.” Scientia Iranica, Vol. 11, Nos. 1–2, pp. 92–103.

    Google Scholar 

  • Zambon, R. C., Barros, M. T. L., Barbosa, P. S. F., Francato, A. L., Lopes, J. E. G., and Yeh, W. W-G. (2011). “Planning operation of large-scale hydrothermal system.” World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability, American Society of Civil Engineers, Reston, VA, pp. 3026–3035, DOI: 10.1061/41173(414)316.

    Chapter  Google Scholar 

  • Zambon, R. C., Barros, M. T. L., Lopes, J. E. G., Barbosa, P. S. F., Francato, A. L., and Yeh, W. W-G. (2012). “Optimization of large-scale hydrothermal system operation.” Journal of Water Resources Planning and Management, Vol. 138, No. 2, pp. 135–143, DOI: 10.1061/(ASCE)WR.1943-5452.0000149.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Jothiprakash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jothiprakash, V., Arunkumar, R. Multi-reservoir optimization for hydropower production using NLP technique. KSCE J Civ Eng 18, 344–354 (2014). https://doi.org/10.1007/s12205-014-0352-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-014-0352-2

Keywords

Navigation