Skip to main content
Log in

Spatially-explicit assessment of flood risk caused by climate change in South Korea

  • Research Paper
  • Water Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Identifying spatially-explicit risk is essential for efficient flood management with limited resources and budgets. We investigated national-scale relative flood risk for 139 sub-basins in South Korea under current and future climate conditions. A non-parametric index method was employed to calculate relative flood risk based on a sensitivity index, an exposure index, and an adaptive capacity index for each sub-basin. A dynamically downscaled climate simulation based on the A2 Greenhouse Gas (GHG) emission scenario, provided by the Korean Meteorological Research Institute (METRI), was used to examine possible change in flood risk. The estimated flood risk generally agreed with historical flood damage. The highly vulnerable sub-basins had high exposure indices, reflecting frequent heavy rainfall, as well as high sensitivity indices due to dense population at low elevation. Although rainfall intensity and frequency is likely to increase under the A2 GHG emission scenario, the spatial pattern of relative flood risk did not change remarkably. Our results indicate that reducing flood sensitivity levels and enhancing the adaptive capacity in vulnerable regions will be critical aspects of climate change preparation in South Korea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adger, W. N. (2006). “Vulnerability.” Global Environ. Change, Vol. 16, No. 3, pp. 268–281.

    Article  Google Scholar 

  • Bae, D. H., Jung, I. W., and Chang, H. (2008a). “Long-term trend of precipitation and runoff in Korean river basins.” Hydrol. Process., Vol. 22, pp. 2644–2656.

    Article  Google Scholar 

  • Bae, D. H., Jung, I. W., and Chang, H. (2008b). “Potential changes in Korean water resources estimated by a high resolution climate simulation.” Clim. Res., Vol. 35, No. 3, pp. 213–226.

    Article  Google Scholar 

  • Bae, D. H., Jung, I. W., and Lettenmaier, D. P. (2011). “Hydrologic uncertainties in climate change from IPCC AR4 GCM simulations of the Chungju basin, Korea.” J. Hydrol., Vol. 401,Issuues 1–2, pp. 90–105.

    Article  Google Scholar 

  • Beniston, M., Stephenson, D. B., Christensen, O. B., Ferro, C. A. T., Frei, C., Goyette, S., Halsnaes, K., Holt, T., Jylhä, K., Koffi, B., Palutikof, J., Schöll, R., Semmler, T., and Woth, K. (2007). “Future extreme events in european climate: And exploration of regional climate model projections.” Climatic Change, Vol. 81, No. 1, pp. 71–95.

    Article  Google Scholar 

  • Boo, K. O., Kwon, W. T., and Baek, H. J. (2006). “Change of extreme events of temperature and precipitation over Korea using regional projection of future climate change.” Geophys. Res. Lett., Vol. 33, No. L01701, DOI: 10.1029/2005GL023378.

  • Bradbrook, K., Waller, S., and Morris, D. (2005). “National floodplain mapping: Datasets and methods — 160,000 km in 12 months.” Nat. Hazards, Vol. 36, Nos. 1–2, pp. 103–123.

    Article  Google Scholar 

  • Chang, H. and Franczyk, J. (2008). “Climate change, land use change, and floods: Toward an integrated assessment.” Geogr. Compass, Vol. 5, No. 2, pp. 1549–1579.

    Article  Google Scholar 

  • Chang, H., Franczyk, J., and Kim, C. (2009). “What is responsible for increasing flood risks? The case of Gangwon Province, Korea.” Nat. Hazards, Vol. 48, No. 3, pp. 339–354.

    Article  Google Scholar 

  • Chang, H., Jung, I. W., Strecker, A., Wise, D., Lafrenz, M., Shandas, V., Moradkhani, H., Yeakley A., Pan, Y., Bean, R., Johnson, G., and Psaris, M. “Water supply, demand, and quality indicators of the spatial distribution of water resources vulnerability in the Columbia River basin, USA.” Atmosphere-Ocean (In press).

  • Chang, H. and Kwon, W. T. (2007). “Spatial variations of summer precipitation trends in South Korea, 1973–2005.” Environ. Res. Lett., Vol. 2, Nos. 1–9, DOI: 10.1088/1748-9326/2/4/045012.

  • Choi, Y. (2002). “Trends in daily precipitation events and their extremes in the southern region of Korea.” Korean Soc. Environ. Impact Asses., Vo. 11, pp. 189–203.

    Google Scholar 

  • Chung, Y. S., Yoon, M. B., and Kim, H. S. (2004). “On climate variations and changes observed in South Korea.” Climatic Change, Vol. 66, Nos. 1–2, pp. 151–161.

    Article  Google Scholar 

  • Cunderlik, J. M. and Simonovic, S. P. (2005). “Hydrological extremes in a southwestern Ontario river basin under future climate conditions.” Hydrolog. Sci. J., Vol. 50, No. 4, pp. 631–654.

    Article  Google Scholar 

  • de Graaf, R. E., van de Giesen, N., and van de Ven, F. (2008). “Alternative water management options to reduce vulnerability for climate change in the Netherlands.” Nat. Hazards, Vol. 51, No. 3, pp. 407–422.

    Article  Google Scholar 

  • Fowler, A. M. and Hennessy, K. J. (1995). “Potential impacts of Global Warming on the frequency and magnitude of heavy precipitation.” Nat. Hazards, Vol. 11, No. 3, pp. 282–303.

    Article  Google Scholar 

  • Gallopin, G. C. (2006). “Linkages between vulnerability, resilience, and adaptive capacity.” Global Environ. Change, Vol. 16, No. 3, pp. 293–303.

    Article  Google Scholar 

  • Hall, J. W., Sayers, P. B., and Dawson, R. J. (2005). “National-scale assessment of current and future flood risk in England and Wales.” Nat. Hazards, Vol. 36, Nos. 1–2, pp. 147–164.

    Article  Google Scholar 

  • Hamlet, A. F. and Lettenmaier, D. P. (2007). “Effects of 20th Century warming and climate variability on flood risk in the Western U.S.” Water Resour. Res., Vol. 43, No. W06427, doi:10.1029/2006WR005099.

  • Huntington, T. G. (2006). “Evidence for intensification of the global water cycle: review and synthesis.” J. Hydrol., Vol. 319, pp. 83–95.

    Article  Google Scholar 

  • Hurd, B. H., Leary, N., Jones, R., and Smith, J. B. (1999). “Relative regional vulnerability of water resources to climate change.” J. Am. Water Resour. As., AWRA, Vol. 35, No. 6, pp. 1399–1410.

    Article  Google Scholar 

  • Im, E. S., Jung, I. W., and Bae, D. H. (2011). “The temporal and spatial structure of trends in extreme indices over Korea simulated by regional climate model: Validation (1971–2000) and projection (2000–2100).” Int. J. Climatol., Vol. 31, No. 1, pp. 72–86.

    Article  Google Scholar 

  • Im, E. S., Jung, I. W., Chang, H., Bae, D. H., and Kwon, W. T. (2010). “Hydroclimatological response to dynamically downscaled climate change simulations for Korean basins.” Climatic Change, Vol. 100, No. 3, pp. 485–508.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007). Climate change 2007: The physical science basis, Contribution of WG I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, Available at http://ipcc-wg1.ucar.edu/wg1/wg1-report.html (Assessed June 06, 2011)

  • Jung, I. W. (2008). Climate change impact assessments on Korean water resources using hybrid downscaling technique, Doctoral Dissertation, Sejong University, Seoul, Korea.

  • Jung, I. W., Bae, D. H., and Kim, G. (2011b). “Recent trends of mean and extreme precipitation over South Korea.” Int. J. Climatol., Vol. 31, No. 3, pp. 359–370.

    Article  Google Scholar 

  • Jung, I. W., Bae, D. H., and Lee, B. J. (2012). “Possible change in Korean streamflow seasonality based on multi-model climate projections.” Hydrol. Process., DOI: 10.1002/hyp.9215.

  • Jung, I. W., Chang, H., and Moradkhani, H. (2011a). “Quantifying uncertainty in urban flooding analysis considering hydro-climatic projection and urban development effects.” Hydrol. Earth Syst. Sc., Vol. 15, pp. 617–633.

    Article  Google Scholar 

  • Kay, A. L., Davies, H. N., Bell, V. A., and Jones, R. G. (2009). “Comparison of uncertainty sources for climate change impact: Flood frequency in England.” Climatic Change, Vol. 92, Nos. 1–2, pp. 41–63.

    Article  Google Scholar 

  • Korea National Statistical Office (KNSO) (2011). Available at http://www.nso.go.kr. (Assessed June 6, 2011)

  • Korean Statistical Information Service (KOSIS) (2011). Available at http://www.kosis.kr/. (Assessed June 6, 2011)

  • Lee, J. J., Kwon, H. H., Kim, T. W. (2012). “Spatio-temporal analysis of extreme precipitation regimes across South Korea and its application to regionalization.” J. Hydro-environment Res., KWRA, Vol. 6, pp. 101–110.

    Article  Google Scholar 

  • Lee, M. H., Jung, I. W., and Bae, D. H. (2011). “Korean flood vulnerability assessment on climate change.” J. Korea Water Resour. As., KWRA, Vol. 44, No. 8, pp. 653–666.

    Article  Google Scholar 

  • McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J., and White, K. S. (eds.) (2001). Climate change 2001: Impacts, adaptation, and vulnerability, United Nations Intergovernmental Panel on Climate Change. Available at: www.grida.no/climate/ipcc_tar/wg2/001.htm. (Assessed June 6, 2011).

  • Merz, R., Blöschl, G., and Humer, G. (2008). “National flood discharge mapping in Austria.” Nat. Hazards, Vol. 46, No. 1, pp. 53–72.

    Article  Google Scholar 

  • Min, S. K., Zhang, X., Zwiers, F. W., and Hegerl, G. (2011). “Human contribution to more-intense precipitation extremes.” Nature, Vol. 470, No. 7334, pp. 378–381.

    Article  Google Scholar 

  • Ministry of Land, Transport and Maritime Affairs (MLTM) (2008). Water resources in Korea 2007, Water Resources Bureau of MLTM, Edited by Korea Institute of Construction Technology, Geonet, Seoul, Available at http://www.adb.org/Documents/Books/AWDO/2007/br04.pdf (Assessed June 6, 2011).

  • National Emergency Management Agency (NEMA) (2006). Annual disaster reports 2006.

  • Pall, P., Aina, T., Stone, D. A., Stott, P. A., Nozawa, T., Hilberts, A. G. J., Lohmann, D., and Allen, M. R. (2011). “Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000.” Nature, Vol. 470, No. 7334, pp. 382–385.

    Article  Google Scholar 

  • Rodda, H. J. E. (2005). “The development and application of a flood risk model for the Czech Republic.” Nat. Hazards, Vol. 36, Nos. 1–2, pp. 207–220.

    Article  Google Scholar 

  • Son, K. H., Lee, B. J., and Bae, D. H. (2010). “Assessment on flood characteristics changes using multi-GCMs climate scenario.” J. Korea Water Resour. As., KWRA, Vol. 43, No. 9, pp. 789–799.

    Article  Google Scholar 

  • Tebaldi, C., Hayhoe, K., Arblaster, J. M., and Meehl, G. A. (2006) “Going to extremes, an intercomparison of model simulated historical and future changes in extreme events.” Climatic Change, Vol. 79, Nos. 3–4, pp.185–211.

    Article  Google Scholar 

  • Turner, B. L., Kasperson, R. E., Matson, P. A., McCarthy, J., Corell, R. W., Christensen, L., Ecklely, N., Kasperson, J. X., Luers, A., Martello, M. L., Polsky, C., Pulsipher, A., and Schiller, A. (2003). “A framework for vulnerability analysis in sustainability science.” P. Natl. Acad. Sci. USA., Vol. 100, No. 14, pp. 8074–8079.

    Article  Google Scholar 

  • Usul, N. and Turan, B. (2006). “Flood forecasting and analysis within the Ulus Basin, Turkey, using geographic information systems.” Nat. Hazards, Vol. 39, No. 2, pp. 213–229.

    Article  Google Scholar 

  • WAter resources Management Information System (WAMIS) (2011). Available at http://www.wamis.go.kr/. (Assessed June 6, 2011).

  • Webster, P. J., Holland, G. J., Curry, J. A., and Chang, H. R. (2005). “Changes in tropical cyclone number, duration, and intensity in a warming environment.” Science, Vol. 309, No. 5742, pp. 1844–1846.

    Article  Google Scholar 

  • Wilby, R. L. and Harris, I. (2006). “A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK.” Water Resour. Res., Vol. 42, No. W02419, doi:10.1029/2005WR004065.

  • Young, O. R., Berkhout, F., Gallopin, G. C., Janssen, M. A., Ostrom, E., and van der Leeuw, S. (2006). “The globalization of socio-ecological systems: An agenda for scientific research.” Global Environ. Change, Vol. 16, No. 3, pp. 304–316.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Won Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, IW., Chang, H. & Bae, DH. Spatially-explicit assessment of flood risk caused by climate change in South Korea. KSCE J Civ Eng 17, 233–243 (2013). https://doi.org/10.1007/s12205-013-1609-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-013-1609-x

Keywords

Navigation