Skip to main content
Log in

Modeling of velocity fields by the entropy concept in narrow open channels

  • Water Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

To predict velocity field in narrow open channels, the Tsallis entropy based on probability has been developed in this paper. Given a definition of the Tsallis entropy, it is maximized by using the probability density function, which then is used to attain a velocity distribution equation. This is then employed for calculating the velocity distribution in narrow open channel under a wide range of discharge and water depth, and finally, for viability, these calculations are compared with some relevant field experimental results. By comparing the actual field data and the model results for estimating velocity distribution, this study highlights the application of the Tsallis entropy concept to predict it in narrow open channels. The obtained results showed that this theoretically generated equation is efficient for predicting the velocity distribution in narrow open channels with the maximum velocity taking place below the free surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Absi, R. (2011). “An ordinary differential equation for velocity distribution and dip-phenomenon in open channel flows.” J. Hydr. Res., Vol. 49, No. 1, pp. 82–89.

    Article  MathSciNet  Google Scholar 

  • Bayazit, M. (1983). “Flow structure and sediment transport mechanics in steep channels.” Proc. Euromech 156: Mech. of Sediment Transport, pp. 197–206.

    Google Scholar 

  • Bonakdari, H., Larrarte, F., Lassabatere, L., and Joannis, C. (2008). “Turbulent velocity profile in fully-developed open channel flows.” Environ. Fluid Mech., Vol. 8, No. 1, pp. 1–17.

    Article  Google Scholar 

  • Cardoso, A. H., Graf, W. H., and Gust, G. (1989). “Uniform flow in a smooth open channel.” J. Hydr. Res., Vol. 27, No. 5, pp. 603–616.

    Article  Google Scholar 

  • Cebeci, T. and Smith, A. M. O. (1974). Analysis of turbulent boundary layers, Academic Press, New York.

    MATH  Google Scholar 

  • Chen, Y. C. and Chiu, C. L. (2002). “An efficient method of discharge measurements in tidal streams.” J. Hydrol., Vol. 265, Nos. 1–4, pp. 212–224.

    Article  Google Scholar 

  • Chen, Y. C. and Chiu, C. L. (2004). “A fast method of flood discharge estimation.” Hydrol. Process., Vol. 18, No. 9, pp. 1671–1684.

    Article  Google Scholar 

  • Chiu, C. L. (1987). “Entropy and probability concept in hydraulics.” J. Hydr. Eng., Vol. 113, No. 5, pp. 583–600.

    Article  Google Scholar 

  • Chiu, C. L. (1988). “Entropy and 2-D velocity distribution in open channels.” J. Hydr. Eng., Vol. 114, No. 7, pp. 738–756.

    Article  Google Scholar 

  • Chiu, C. L. (1989). “Velocity distribution in open channel flow.” J. Hydr. Eng., Vol. 115, No. 5, pp. 576–594.

    Article  Google Scholar 

  • Chiu, C. L. (1991). “Application of entropy concept in open-channel flow study.” J. Hydr. Eng., Vol. 117, No. 5, pp. 615–628.

    Article  Google Scholar 

  • Chiu, C. L. and Chiou J. D. (1986). “Structure of 3-D flow in rectangular open-channels.” J. Hydr. Eng., Vol. 112, No. 11, pp. 1050–1068.

    Article  Google Scholar 

  • Chiu, C. L. and Hsu, S. L. (2006). “Probabilistic approach to modeling of velocity distribution in fluid flows.” J. Hydrol., Vol. 316, Nos. 1–4, pp. 28–42.

    Article  Google Scholar 

  • Chiu, C. L., Hsu, S. M., and Tung, N. C. (2005). “Efficient methods of discharge measurement in rivers and stream based on the probability concept.” Hydrol. Process., Vol. 19, No. 20, pp. 3935–3946.

    Article  Google Scholar 

  • Choo, T. H., Jeong, I. J., Chae, S. K., Yoon, H. C., and Son, H. S. (2011). “A study on the derivation of a mean velocity formula from Chiu’s velocity formula and bottom shear stress.” Hydrol. Earth Syst. Sci. Discuss., Vol. 8, No. 4, pp. 6419–6442.

    Article  Google Scholar 

  • Chow, V. T. (1959). Open channel hydraulics, McGraw-Hill, New York.

    Google Scholar 

  • Coleman, N. L. and Alonso, C. V. (1983). “Two dimensional channel flows over rough surfaces.” J. Hydr. Eng., Vol. 109, No. 2, pp. 175–188

    Article  Google Scholar 

  • Coles, D. (1956). “The low of the wake in the turbulent boundray layer.” J. Fluid Mech., pp. 191–226.

    Google Scholar 

  • Guo, J. and Julien, P. Y. (2008). “Application of the modified log-wake law in open-channels.” J. Appl. Fluid Mech., Vol. 1, No. 2, pp. 17–23.

    Google Scholar 

  • Guo, J., Julien, P. Y., and Meroney, R. N. (2005). “Modified log-wake law in zero-pressure-gradient turbulent boundary layers.” J. Hydr. Res., Vol. 43, No. 4, pp. 421–430.

    Article  Google Scholar 

  • Jaynes, E. T. (1957a). “Information theory and statistical mechanics, I.” Phys. Rev., Vol. 106, No. 4, pp. 620–630.

    Article  MATH  MathSciNet  Google Scholar 

  • Jaynes, E. T. (1957b). “Information and statistical mechanics, II.” Phys. Rev., Vol. 108, No. 2, pp. 171–190.

    Article  MathSciNet  Google Scholar 

  • Jaynes, E. T. (1982). “On the rationale of maximum entropy methods.” Proc. IEEE., Vol. 70, No. 9, pp. 939–952.

    Article  Google Scholar 

  • Kamphuis, J. W. (1974). “Determination of sand roughness for fixed beds.” J. Hydr. Res., Vol. 12, No. 2, pp. 193–203.

    Article  Google Scholar 

  • Kirkgöz, S. (1989). “Turbulent velocity profiles for smooth and rough open channel flow.” J. Hydr. Eng., Vol. 115, No. 11, pp. 1543–1561.

    Article  Google Scholar 

  • Klebanoff, P. S. (1954). “Characteristics of turbulence in a boundary layer with zero pressure gradient.” NACA Technical Notes, US.

    Google Scholar 

  • Kundu, A. and Ghoshal, K. (2012). “An analytical model for velocity distribution and dip-phenomenon in uniform open channel flows.” Inter. J. Fluid Mech. Res., Vol. 39, No. 5, pp. 381–395.

    Article  Google Scholar 

  • Larrarte, F. (2006). “Velocity fields within sewers: An experimental study.” Flow Measurement Inst., Vol. 17, No. 5, pp. 282–290.

    Article  Google Scholar 

  • Lassabatere, L., Pu, J., Bonakdari, H., Joannis, C., and Larrarte, F. (2013). “Velocity distribution in open channel flows: Analytical approach for the outer region.” J. Hydr Eng., Vol. 139, No. 1, pp. 37–43.

    Article  Google Scholar 

  • Luo, H. and Singh, V. (2011). “Entropy theory for two-dimensional velocity distribution.” J. Hydrol. Eng., Vol. 16, No. 4, pp. 303–315.

    Article  Google Scholar 

  • Maszczyk, T. and Dush, W. (2008). “Comparison of shannon, renyi and tsallis entropy used in decision trees.” Lecture Notes in Computer Science 2008 5097/2008, pp. 43–651.

    Google Scholar 

  • Naot, D., Nezu, I., and Nakagawa, H. (1993). “Hydrodynamic behavior of compound rectangular open channels.” J. Hydr. Eng., Vol. 119, No. 3, pp. 391–408.

    Article  Google Scholar 

  • Nezu, I. and Rodi, W. (1985). “Experimental study on secondary currents in open channel flow.” Proc. 21st Congress of IAHR, Melbourne, pp. 115–119.

    Google Scholar 

  • Nezu, I. and Nakagawa, H. (1993). Turbulence in open-channel flows. IAHR-Monograph, Balkema.

    Google Scholar 

  • Nezu, I. and Naot, D. (1995). “Turbulence structure and secondary currents in compound open channel flows with variable depth flood plains.” 10th Symp. on Turbulence Shear Flows, pp. 7–12.

    Google Scholar 

  • Nezu, I. and Rodi, W. (1986). “Open-channel flow measurements with a laser Doppler anemometer.” J. Hydr. Eng., Vol. 112, No. 5, pp. 335–355.

    Article  Google Scholar 

  • Nezu, I., Nakagawa, H., and Tominaga, A. (1985). “Secondary currents in a straight channel flow and the relation to its aspect ratio.” Turbulent Shear Flows 4, pp. 246–260.

    Article  Google Scholar 

  • Nezu, I., Tominaga, A., and Nakagawa, H. (1993). “Field measurements of secondary currents in straight rivers.” J. Hydr. Eng., Vol. 119, No. 5, pp. 598–614.

    Article  Google Scholar 

  • Pollert, J. and Bares, V. (2002). “Determination of velocity fields in a circular sewer.” International Conference on Sewer Operation and Maintenance 2002, Bradford, UK.

    Google Scholar 

  • Prandtl, L. (1932).“Zur turbulenten strömun in rohren und läns platten.” Erebnisse der Aerodynamischen zu Göttingen 4, pp. 18–29.

    Google Scholar 

  • Rahimpour, M. and Maghrebi, M. F. (2006). “Prediction of stagedischarge curves in open-channels using a fixed-point velocity measurement.” Flow Meas. Instrum., Vol. 17, pp. 276–281.

    Article  Google Scholar 

  • Ramana Prasada, B. V. (1991). Velocity, shear and friction factor studies in rough rectangular open channels for supercritical flow, PhD Thesis, Indian Institute of Science, Bangalore, India.

    Google Scholar 

  • Sarma, K. V. N., Lakshminarayana, P., and Rao, N. S. L. (1983). “Velocity distributions in smooth rectangular open channels.” J. Hydr. Eng., Vol. 109, No. 2, pp. 270–289.

    Article  Google Scholar 

  • Shannon, C. E. (1948). “A mathematical theory of communication.” Bell Syst. Tech. J., Vol. 27, pp. 379–423.

    Article  MATH  MathSciNet  Google Scholar 

  • Shiono, K. and Feng, T. (2003). “Turbulent measurements of dye concentration and effects of secondary flow on distribution in open channel flows.” J. Hydr. Eng., Vol. 129, No. 5, pp. 373–384.

    Article  Google Scholar 

  • Shiono, K., Scotte, C. F., and Kearney, D. (2003). “Prediction of solute transport in a compound channel using turbulence models.” J. Hydr. Res., Vol. 41, No. 3, pp. 247–258.

    Article  Google Scholar 

  • Sill, B. L. (1982). “New flat plate turbulent velocity profiles.” J. Hydr. Eng., Vol. 108, No. 1, pp. 1–15.

    Google Scholar 

  • Singh, V. P. (1997). “The use of entropy in hydrology and water resources.” Hydrological Proc., Vol. 11, No. 6, pp. 587–626.

    Article  Google Scholar 

  • Song, T., Graf, W. H., and Lemin, U. (1994). “Uniform flow in open channels with movable gravel bed.” J. Hydr. Res., Vol. 32, No. 6, pp. 861–876.

    Article  Google Scholar 

  • Steffler, P. M., Rajaratnam, N., and Peterson, A. W. (1985). “LDA measurements in open channel flow.” J. Hydr. Eng., Vol. 111, No. 1, pp. 119–130.

    Article  Google Scholar 

  • Termini, D. and Greco, M. (2006). “Computation of flow velocity in rough channels.” J. Hydr. Res., Vol. 44, No. 6, pp. 777–784.

    Article  Google Scholar 

  • Tominaga, A. and Nezu, I. (1991). “Turbulent structure in compound open-channel flows.” J. Hydr. Eng., Vol. 117, No. 1, pp. 21–41.

    Article  Google Scholar 

  • Townsend, A. A. (1956). The structure of turbulent shear flow, Cambridge University Press.

    MATH  Google Scholar 

  • Tsallis, C. (1988). “Possible generalization of Boltzmann-Gibbs statistics.” J. Statistical Phys., Vol. 52, Nos. 1–2, pp. 479–487.

    Article  MATH  MathSciNet  Google Scholar 

  • Vedula, S. and Achanta, R. R. (1985). “Bed shear from velocity profiles: A new approach.” J. Hydr. Eng., Vol. 111, No. 1, pp. 131–143.

    Article  Google Scholar 

  • Von Kármán, T. (1930). “Mechanische ähnlichkeit und turbulenz.” Göttiner Nachríchten, Math. Phys. Klasse., pp. 58–60.

    Google Scholar 

  • Wills, J. C. (1985). “Near-bed velocity distribution.” J. Hydr. Eng., Vol. 111, No. 5, pp. 741–753.

    Article  Google Scholar 

  • Wu, X. (2003). “Calculation of maximum entropy densities with application to income distribution.” J. Econometrics. Vol. 115, No. 2, pp. 347–354.

    Article  MATH  MathSciNet  Google Scholar 

  • Xinyu, L., Zengnan, D., and Changzhi, C. (1995). “Turbulent flow in smooth-wall open channels with different slopes.” J. Hydr. Res., Vol. 33, No. 5, pp. 333–347.

    Article  Google Scholar 

  • Zanoun, E. S., Durst, F., and Nagib, H. (2003). “Evaluating the law of the wall in two-dimensional fully developed turbulent channel flows.” Phys. Fluids., Vol. 15, No. 10, pp. 1–11.

    Article  MathSciNet  Google Scholar 

  • Zippe, H. J. and Graf, W. H. (1983). “Turbulent boundary layer flow over permeable and non-permeable rough surfaces.” J. Hydr. Res., Vol. 21, No. 1, pp. 51–65.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Bonakdari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonakdari, H., Moazamnia, M. Modeling of velocity fields by the entropy concept in narrow open channels. KSCE J Civ Eng 19, 779–789 (2015). https://doi.org/10.1007/s12205-013-0173-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-013-0173-8

Keywords

Navigation