Skip to main content
Log in

Guided wave propagation induced by piezoelectric actuator in bolted thin steel members

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Approximately 35% of Korean railroad bridges are classified as steel plate girder bridges. Their connections in the vicinity of stiffeners and other secondary members toward the main girder can be progressively deteriorated owing to stress concentrations, residual stress, welding defects, and harsh environmental conditions. Most bridges of this type were built in the early 1900s, hence, they suffer from aging and progressive degradation of connection zones, and they require extensive maintenance. In accordance with these efforts, the objective of this study is to address the detailed analysis of thin steel plates with bolt connections in order to simulate a method for detecting damage due to loosening in mechanically fastened zones of steel plate girders. For simplicity, we confine this study to previous laboratory-scale experiments for bolt connection problems using PZT (Lead-Zirconate-Titanate) sensors, and we carry out a comparative study with the aid of stress wave transmission using the finite element method, signal processing using wavelets, and piezoelectricity. We carried out fundamental modal analysis and transient dynamic analysis with 3D piezoelectric elements as a sensor/actuator in an open circuit. The material deviation effect of the piezoelectric patch manufacturing process, poling directional properties, geometrical modeling of bolts (bolt pressure), waveform sensitivity, and phase/group velocity characteristics of generated Lamb waves are discussed in conjunction with time-frequency-scale domain analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achenbach, J. D. (1975). Wave propagation in elastic solids, North-Holland Pub. Co., p. 425.

  • Cook, R. D., Malkus, D. S., and Plesha, M. E. (1999). Concepts and applications of finite element analysis, Wiley, John & Sons.

  • Curie, J. and Curie, P. (1880). “Développement, par compression, de l’électricité polaire dans les cristaux hémièdres à faces inclines.” Comptes Rendus de l’Académie des Sciences, Vol. 91, pp. 294–295.

    Google Scholar 

  • Giurgiutiu, V. (2003). “Lamb wave generation with piezoelectric wafer active sensors for structural health monitoring.” Proc. SPIE-10th Int. Symp. Smart Str. Mat., pp. 111–122.

  • Greve, D. W., Tyson, N. L., and Oppenheim, I.J. (2006). “Lamb waves in plate girder geometries.” IMAC-XXIV Conf. Str. Dyn., Soc. Exp. Mech., St. Louis.

    Google Scholar 

  • Hamstad, M. A. (2010). “An illustrated overview of the use and value of a wavelet transformation to acoustic emission technology.” Vallen Systeme GmbH, Munich, Germany, pp. 1–3.

  • Ihlenburg, F. and Lloyd, G. (1998). Finite element analysis of acoustic scattering: With applications to fluid-structure interaction, Springer-Verlag, New York, Vol. 132.

    Book  Google Scholar 

  • Ip, K. H., Tse, P. W., and Tam, H. Y. (2004). “Extraction of patchinduced Lamb waves using a wavelet transform.” Smart Mat. Str., Vol. 13, No. 4, pp. 862–872.

    Google Scholar 

  • Jordan, T. L. and Ounaies, Z. (2001). Piezoelectric ceramics characterization, ICASE Report No. 2001-28, NASA Langley Res. Ctr., Hampton, VA, p. 22.

    Google Scholar 

  • Kessler, S. S., Spearing, S. M., and Soutis, C. (2002). “Damage detection in composite materials using Lamb wave methods.” Smart Mat. Str., Vol. 11, No. 2, pp. 269–278.

    Article  Google Scholar 

  • Kim, Y. H. (2003). Damage assessment for composite structures using plate wave and piezoelectric sensors, PhD Dissertation, Dept. of Mech. Engrg., KAIST. p. 132.

  • Kim, J. S., Hong, K. S., and Yu, I. (1990). “dc Field poling behavior of a PZT ceramic resonator.” J. Korean Phys. Soc., Vol. 23, No. 6, pp. 504–510.

    Google Scholar 

  • Kim, J. G., Park, S. S., Kim, Y. Y., Choi, S. H., and Kim, B. K. (1996). “Finite element modeling and experimental verification of the structures with bolted joints.” J. Korean Mech. Engrg. Soc. A, Vol. 20, No. 6, pp. 1854–1861.

    Google Scholar 

  • Kyung, G. S., Lee, J. S., Choi, I. Y., and Hong, S. U. (2002). “Classification and analysis: Deteriorations of Korean steel plate girder bridges.” Proc. Korean Soc. Stl. Const., pp. 32–40.

  • Mould, R. F. (2006) “Pierre Curie, 1859–1906.” Hist. Med., Curr. Onco., Vol. 14, No. 2, pp. 74–82.

    Article  Google Scholar 

  • Nieuwenhuis, J. H., Neumann, J. J. Jr., Greve, D. W., and Oppenheim, I. J. (2005). “Generation and detection of guided waves using PZT wafer transducer.” IEEE Trans. Ultra., Ferro. Freq. Cont., Vol. 52, No. 11, pp. 2103–2111.

    Article  Google Scholar 

  • Park, S. H. (2008). Structural health monitoring for critical members of civil infrastructures using piezoelectric active sensors, PhD Dissertation, Dept. of Civil and Env. Eng., KAIST, p. 114.

  • Park, S. H., Yun, C. B., and Roh, Y. R. (2005). “PZT induced lamb waves and pattern recognition for on-line health monitoring of jointed steel plates.” Proc. SPIE-Smart Str. Mat., Vol. 5765, pp. 364–375.

    Google Scholar 

  • Parvanova, V. D. and Nadoliisky, M. M. (2005). “Polarization processes in PZT ceramics.” Bulg. J. Phys., Vol. 32, pp. 45–50.

    Google Scholar 

  • Perry, A., Bowen, C. R., and Mahon, S. W. (1999). “Finite element modelling of 3-3 piezocomposites.” Scr. Mat., Vol. 41, No. 9, pp. 1001–1007.

    Article  Google Scholar 

  • Rhee, I., Kwak, H.-G., and Kim, J. H. (2006). “Damage analysis of thin steel members with bolt connection using Lamb waves and PZT element.” Korean Soc. Civil Eng. A, Vol. 26, No. 4A, pp. 587–596 (in Korean).

    Google Scholar 

  • Rose, J. L. (2003). Ultrasonic waves in solid media, Cambridge University Press, p. 454.

  • Sensor Technology Limited (1991). Measurement of properties of piezoelectric ceramics, BM91-309, Manufacturer Handbook, Collingwood, Canada.

    Google Scholar 

  • Shiely, J. E. and Mischke, C. R. (1989). Mechanical engineering design, 5th Ed., McGraw-Hill.

  • Simulia (2007). ABAQUS user’s manual, Dassault Systémes, Providence, RI USA.

    Google Scholar 

  • Song, F., Huang, G. L., Kim, J. H., and Haran, S. (2008). “On the study of surface wave propagation in concrete structures using a piezoelectric actuator/sensor system.” Smart Mat. Str., Vol. 17, pp. 1–8.

    MATH  Google Scholar 

  • Thronburgh, R. P., Chattopadhyay, A., and Choshal, A. (2004). “Transient vibration of smart structures using a coupled piezoelectricmechanical theory.” J. Sound. Vibr., Vol. 274,Issues 1–2, pp. 53–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inkyu Rhee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhee, I., Choi, E. & Roh, YS. Guided wave propagation induced by piezoelectric actuator in bolted thin steel members. KSCE J Civ Eng 16, 398–406 (2012). https://doi.org/10.1007/s12205-012-1300-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-012-1300-7

Keywords

Navigation