Skip to main content
Log in

Yet another possible mechanism for anomalous transport: Theory, numerical method, and experiments

  • Environmental Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Recently there has been considerable interest in anomalous transport in porous media. An Advection-Dispersion Equation (ADE) is widely used as a governing equation of contaminant migration, however there have been a number of reports that ADE does not express observational and experimental data. This clear discrepancy is attributed to insufficient knowledge about the mechanism of anomalous transport. The primary objective of this study is to present the possible mechanism of anomalous transport analytically by investigating the effect of viscosity on the dispersion process from the equation of Continuous Time Random Walk (CTRW). In addition, a method, which predicts contaminant migration not only in homogeneous material but also in heterogeneous material, has developed by combining the clarified mechanism and streamline method. Streamline is discretized to infinitesimal passes and CTRW which describes contaminant transportation is numerically integrated in the passes. Results obtained from the developed method have agreed well with experimental results of this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, E. and Gelhar, L. (1992). “Field study of dispersion in a heterogeneous aquifer, 2, spatial moment analysis.” Water Resour. Res., Vol. 28, No. 12, pp. 3293–3308.

    Article  Google Scholar 

  • Anderson, M. (1979). “Using models to simulate the movement of contaminants through groundwater flow systems.” CRC Crit. Rev. Environ. Control, Vol. 9, No. 2, pp. 97–156.

    Article  Google Scholar 

  • Bear, J. (1972). Dynamics of fluids in porous media, American Elsevier Publishing, New York.

    MATH  Google Scholar 

  • Benson, D., Wheatcraft, S., and Meerschaert, M. (2000). “The fractional-order governing equation of levy motion.” Water Resour. Res., Vol. 36, No. 6, pp. 1413–1423.

    Article  Google Scholar 

  • Berkowitz, B., Klafter, J., Metzler, R., and Scher, H. (2002). “Physical pictures of transport in heterogeneous media: Advection-dispersion, random walk and fractional derivative formulations.” Water Resour. Res., Vol. 38, p. 1191, doi:10.1029/2001WR001,030.

    Article  Google Scholar 

  • Berkowitz, B., Kosakowski, G., Morgolin, G., and Scher, H. (2001). “Analysis of tracer test breakthrough curves in heterogeneous porous media using continuous time random walks.” Ground Water, Vol. 39, No. 4, pp. 29–51.

    Article  Google Scholar 

  • Berkowitz, B. and Scher, H. (1995). “On characterization of anomalous dispersion in porous and fractured media.” Water Resour. Res., Vol. 31, No. 6, pp. 1461–1466.

    Article  Google Scholar 

  • Berkowitz, B. and Scher, H. (2001). “The role of probabilistic approaches to transport theory in heterogeneous media.” Trans. Porous Media, Vol. 42, No. 1, pp. 241–263.

    Article  MathSciNet  Google Scholar 

  • Berkowitz, B., Scher, H., and Silliman, S. (2000). “Anomalous transport in laboratory-scale, heterogeneous porous media.” Water Resour. Res., Vol. 36, No. 1, pp. 149–158.

    Article  Google Scholar 

  • Crane, M. and Blunt, M. (1999). “Streamline-based simulation of solute transport.” Water Resour. Res., Vol. 35, No. 10, pp. 3061–3078.

    Article  Google Scholar 

  • Dagan, G. (1989). Flow and transport in porous formations, Springer Verlog, New York.

    Book  Google Scholar 

  • Dagan, G. and Fiori, A. (2003). “Time-dependent transport in heterogeneous formations of bimodal structures: 1. the model.” Water Resour. Res., Vol. 39, pp. 1112, doi:10.1029/2002WR001,396, 2003.

    Article  Google Scholar 

  • Dentz, M., Cortis, A., Scher, H., and Berkowitz, B. (2004). “Time behavior of solute transport in heterogeneous media: Transition from anomalous to normal transport.” Adv. Water Resour., Vol. 27, No. 2, doi:10.1016/j.advwatres.2003.11.002.

  • Fitts, C. (1987). “Uncertainty in deterministic groundwater transport models due to the assumption of macrodispersive mixing: Evidence from the cape cod (Massachusetts, U.S.A.) and borden (Ontario, Canada) tracer tests.” J. Contam. Hydrol., Vol. 23, Nos. 1–2, pp. 1667–1673.

    Google Scholar 

  • Garabedian, S., LeBlanc, D., Gelhar, L., and Celia, M. (1991). “Largescale natural gradient tracer test in sand and gravel, cape cod, massachusetts: 2 analysis of spatial moments for a nonreactive tracer.” Water Resour. Res., Vol. 27, No. 5, pp. 911–924.

    Article  Google Scholar 

  • Gelhar, L. (1993). Stochastic subsurface hydrology, Prentice Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Gelhar, L.W., Welty, C., and Rehfeldt, K. R. (1992). “A critical review of data on field-scale dispersion in aquifers.” Water Resour. Res., Vol. 28, No. 7, pp. 1955–1974.

    Article  Google Scholar 

  • Hoffman, F., Ronen, D., and Pearl, Z. (1996). “Evaluation of flow characteristics of a sand column using magnetic resonance imaging.” Contam. Hydrol., Vol. 22, Nos. 1–2, pp. 95–107.

    Article  Google Scholar 

  • Indelman, P. and Rubin, Y. (1996). “Solute transport in nonstationary velocity fields.” Water Resour. Res., Vol. 32, No. 5, pp. 1259–1267.

    Article  Google Scholar 

  • Levy, M. and Berkowitz, B. (2003). “Measurement and analysis of nonfickian dispersion in heterogeneous porous media.” J. Contam. Hydrol., Vol. 64, Nos. 3–4, pp. 203–226.

    Article  Google Scholar 

  • Margolin, G. and Berkowitz, B. (2000). “Application of continuous time random walks to transport in porous media.” J. Phys. Chem. B, Vol. 104, No. 16, pp. 3942–3947.

    Article  Google Scholar 

  • Margolin, G. and Berkowitz, B. (2002). “Spatial behavior of anomalous transport”, Phys. Rev. E, Vol. 65, No. 3, doi:10.1103/PhysRevE.65.031,101.

  • Obdam, A. and Veling, E. (1987). “Elliptical inhomogeneities in groundwater flow — An analytical description.” J. Hydrol., Vol. 95, Nos. 1–2, pp. 87–96.

    Article  Google Scholar 

  • Oswald, S., Kinzelbach, W., Greiner, A., and Brix, G. (1997). “Observation of flow and transport processes in artificial porous media via magnetic resonance imaging in three dimensions.” Geoderma, Vol. 80, Nos. 3–4, pp. 417–429.

    Article  Google Scholar 

  • Pichkens, J. and Grisak, G. (1981). “Scale dependent dispersion in a stratified granular aquifer.” Water Resour. Res., Vol. 17, No. 4, pp. 1191–1211.

    Article  Google Scholar 

  • Qian, H. (2000). “Single-particle tracking: Brownian dynamics of viscoelastic materials.” Biophys. J., Vol. 79, No. 1, pp. 137–143.

    Article  Google Scholar 

  • Qian, H., Sheetz, M., and Elson, E. (1991). “Single particle tracking: Analysis of diffusion and flow in two-dimensional systems.” Biophys. J., Vol. 60, No. 4, pp. 910–921.

    Article  Google Scholar 

  • Scher, H. and Lax, M. (1972a). “Stochastic transport in a disordered solid: I. theory.” Phys. Rev., B7, Vol. 7, No. 10, pp. 4491–4502.

    Article  MathSciNet  Google Scholar 

  • Scher, H. and Lax, M. (1972b). “Stochastic transport in a disordered solid: II. impurity conduction.” Phys. Rev., B7, Vol. 7, No. 10, pp. 4502–4519.

    Article  MathSciNet  Google Scholar 

  • Scher, H. and Montroll, E. (1975). “Anomalous transit-time dispersion in amorphous solids.” Phys. Rev., B12, Vol. 12, No. 6, pp. 2455–2477.

    Article  Google Scholar 

  • Scher, H., Margolin, G., and Berkowitz, B. (2002). “Towards a unified framework for anomalous transport in heterogeneous media.” Chem. Phys., Vol. 284, Nos. 1–2, pp. 349–359.

    Article  Google Scholar 

  • Schumer, R., Benson, D., Meerschaert, M., and Wheatcraft, S. (1996). “Eulerian derivation of the advection-dispersion equation.” J. Contam. Hydrol., Vol. 23, pp. 69–84.

    Article  Google Scholar 

  • Shlesinger, M. (1974). “Asymptotic solutions of continuous-time random walks.” J. Stat. Phys., Vol. 10, No. 5, pp. 421–434.

    Article  MathSciNet  Google Scholar 

  • Sidle, C., Nilsson, B., Hansen, M., and Fredericia, J. (1998). “Spatially varying hydraulic and solute transport characteristics of a fractured till determined by field tracer tests, Funen, Denmark.” Water Resour. Res., Vol. 34, No. 10, pp. 2515–2527.

    Article  Google Scholar 

  • Strack, O. (1989). Groundwater mechanics, Prentice Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Suribhatla, R., Bakker, M., Bandilla, K., and Jankovic, I. (2004). “Steady two-dimensional groundwater flow through many elliptical inhomogeneities.” Water Resour. Res., Vol. 40, No. 4, doi:10.1029/2003WR002,718.

  • Thiele, M., Batycky, R., Blunt, M., and Orr, F. (1996). “Simulating flow in heterogeneous systems using streamtubes and streamlines.” SPE Reservoir Engineering, Vol. 11, No. 1, pp. 5–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pang-jo Chun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chun, Pj., Inoue, J. Yet another possible mechanism for anomalous transport: Theory, numerical method, and experiments. KSCE J Civ Eng 16, 45–53 (2012). https://doi.org/10.1007/s12205-012-1269-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-012-1269-2

Keywords

Navigation