Chib, S. (1995). “Marginal likelihood from Gibbs output.” J. of the American Statistical Association, Vol. 90, pp. 1313–1321, DOI: 10.1080/01621459.1995.10476635.
MathSciNet
Article
MATH
Google Scholar
Gelman, A. (1992). “Iterative and non-iterative simulation algorithms.” Computing Science and Statistics 24 (Interface Proceedings), pp. 433–438, DOI: 10.1.1.63.7666.
Google Scholar
Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments, in Bernardo, J. M., Berger, J.M., Dawid, A.P. and Smith A.F.M (Eds.), Bayesian Statistics, Oxford University Press, New York, pp. 169–193, DOI: 10.1.1.27.2952.
Google Scholar
Han, D. (2011). Development of open-source hybrid pavement management system for an international standard, PhD Thesis, Kyoto University, Japan.
Google Scholar
Han, D., Do, M., Kim, S., and Kim, J. (2007). “Life cycle cost analysis of pavement maintenance standard considering user and socioenvironmental cost.” J. of the Korean Society of Civil Engineers, KSCE, Vol. 27, No. 6d, pp. 727–740 (in Korean).
Google Scholar
Hastings, W. K. (1970). “Monte Carlo sampling methods using Markov chains and their applications.” Biometrika, Vol. 57, No. 1, pp. 97–109, DOI: 10.1093/biomet/57.1.97.
Article
MATH
Google Scholar
Ibrahim, J., Ming-hui, C., and Sinha, D. (2001). Bayesian survival analysis, Springer Series in Statistics.
Book
MATH
Google Scholar
Jido, M., Otazawa, T., and Kobayashi, K. (2008). “Optimal repair and inspection rules under uncertainty.” J. of Infrastructure Systems, ASCE, Vol. 14, No. 2, pp. 150–158, DOI: 10.1061/(ASCE)1076-0342(2008)14:2(150).
Article
Google Scholar
Kaito, K. and Kobayashi, K. (2007). “Bayesian estimation of Markov deterioration hazard model.” JSCE J. of Civil Engineering, Vol. 63, No. 2, pp. 336–355, DOI: 10.2208/jsceja.63.336 (in Japanese).
Google Scholar
Kaito, K., Yasuda, K., Kobayashi, K., and Owada, K. (2005). “Optimal maintenance strategies of bridge components with an average cost minimizing principles.” JSCE J. of Earthquake Engineering, Nos. I-73/801, pp. 83–96, DOI: 10.2208/jscej.2005.801_83.
Google Scholar
Kobayashi, K. and Kuhn, K. (2007). The management and measurement of infrastructure: Performance, efficiency and innovation, New Horizons in Regional Science.
Google Scholar
Kobayashi, K., Do, M., and Han, D. (2010a). “Estimation of Markovian transition probabilities for pavement deterioration forecasting.” KSCE J. Civil. Eng., KSCE, Vol. 14, No. 3, pp. 341–351, DOI: 10.1007/s12205-010-0343-x.
Article
Google Scholar
Kobayashi, K., Kaito, K., and Nam, L.T. (2010b). “Deterioration forecasting model with multistage weibull hazard functions.” J. of Infrastructure Systems, ASCE, Vol. 16, No. 4, pp. 282–291, DOI: 10.1061/(ASCE)IS.1943-555X.0000033.
Article
Google Scholar
Kobayashi, K., Kaito, K., and Nam, L.T. (2011). “A statistical deterioration forecasting method using hidden Markov model for infrastructure management.” Transportation Research Part B, Vol. 46, No. 4, pp. 544–561, DOI: 10.1016/j.trb.2011.11.008.
Article
Google Scholar
Koop, G., Poirier, D. J., and Tobias J. L. (2007). Bayesian econometric methods, Cambridge University Press, New York.
Book
Google Scholar
Lancaster, T. (1990). The econometric analysis of transition data, Cambridge University Press, New York.
MATH
Google Scholar
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A., and Teller, H. (1953). “Equations of state calculations by fast computing machines.” J. of Chemical Physics, Vol. 21, No. 6, pp. 1087–1091, DOI: 10.1063/1.1699114.
Article
Google Scholar
Nam, L.T. (2009). Stochastic optimization methods for infrastructure management with incomplete monitoring data, PhD Thesis, Kyoto University, Japan.
Google Scholar
Newey, W. W. and West, K. D. (1987). “A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix.” Econometrica, Vol. 55, No. 3, pp. 703–708, DOI: 10.2307/1913610.
MathSciNet
Article
MATH
Google Scholar
Permanent International Association of Road Congress (PIARC) (2000). Highway development and management series, Vol. 1~7, The World Road Association, 92055 La Defense, France.
Google Scholar
Sugisaki, T., Kaito, K., and Kobayashi, K. (2006). “Statistical deterioration prediction considering nonuniformity of visual inspection cycle.” JSCE J. of Structural Engineering, No. 52A(2), pp. 781–790.
Google Scholar
Train, K. E. (2009). Discrete choice methods with simulation (second edition), Cambridge University Press, New York, USA.
Book
MATH
Google Scholar
Tsuda, Y., Kaito, K., Aoki, K., and Kobayashi, K. (2006a). “Estimating Markovian transition probabilities for bridge deterioration forecasting.” JSCE J. of Structural Engineering / Earthquake Engineering, Vol. 23, No. 2, pp. 241s–256s, DOI: 10.1007/s12205-010-0343-x.
Article
Google Scholar
Tsuda, Y., Kaito, K., Yamamoto, H., and Kobayashi. (2006b). “Bayesian estimation of weibull hazard models for deterioration forecasting.” JSCE J. of Construction Engineering and Management, Vol. 62, No. 3, pp. 473–491, DOI: 10.2208/jscejf.62.473.
Article
Google Scholar
Walubita, L. F., Liu, W., and Scullion, T. (2010). The Texas perpetual pavements: Experience overview and the way forward, Technical Report (FHWA/TX-10/0-4822-3), Texas Department of Transportation, Austin, Texas.
Google Scholar
Walubita, L. F., Das, G., Espinoza, E., Oh, J., Scullion, T., Lee, S., Garibay, J. L., Nazarian, S., and Abdallah, I. (2012). Texas flexible pavements and overlays: Year 1 report — test sections, data collection, analyses, and data storage system, Technical Report (FHWA/TX-12/0-6658-1), Texas Department of Transportation, Austin, Texas.
Google Scholar