Skip to main content
Log in

Implementation of a topographically controlled runoff scheme for land surface parameterizations in regional climate models

  • Water Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

The Common Land Model (CLM), the land component of the Community Climate System Model (CCSM), for simulating water and energy exchanges between land and atmosphere has water and energy biases resulting from deficiencies in some parameterizations related to hydrological processes. This paper presents the implementation of modified parameterizations in the terrestrial hydrological scheme of the CLM and their effects on the runoff prediction. In particular, the new formulation for topographically controlled baseflow developed in this study can represent effects of the surface macropores and the vertical change of hydraulic conductivity on baseflow. To assess the performance of the new improved parameterizations, we compare runoff results from a set of offline simulations using the consistent North American Regional Reanalysis (NARR) meteorological forcing dataset and realistic Surface Boundary Conditions (SBCs) with observations from the U.S. Geological Survey (USGS) gauge station for a study catchment around the Ohio Valley region. The new modified scheme especially incorporating topographically controlled baseflow plays a significant role in generating and partitioning surface runoff and subsurface runoff. It is also observed that the new model-simulated subsurface runoff makes a significant contribution to improve the runoff predictability in simulating declining recession curves due to the role of baseflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramopoulos, F., Rosenzweig, C., and Choudhury, B. (1988). “Improved ground hydrology calculations for Global Climate Models (GCMs): Soil water movement and evapotranspiration.” J. Climate, Vol. 1, No. 9, pp. 921–941.

    Article  Google Scholar 

  • Beven, K. J. (1982a). “Macropores and water flow in soils.” Water Resour. Res., Vol. 18, No. 5, pp. 1311–1325.

    Article  Google Scholar 

  • Beven, K. J. (1982b). “On subsurface stormflow: An analysis of response times.” Hydrol. Sci. J., Vol. 27, No. 12, pp. 505–521.

    Article  Google Scholar 

  • Beven, K. J. (1984). “Infiltration into a class of vertically non-uniform soils.” Hydrol. Sci. J., Vol. 29, No. 4, pp. 425–434.

    Article  Google Scholar 

  • Beven, K. J. and Kirkby, M. J. (1979). “A physically based, variable contributing area model of basin hydrology.” Hydrol. Sci. Bull., Vol. 24, No. 1, pp. 43–69.

    Article  Google Scholar 

  • Bonan, G. B. (1996). “A Land Surface Model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user’s guide.” NCAR, Tech. Note, NCAR/TN-417+ STR, p. 150.

  • Boone, A. and Wetzel, P. J. (1996). “Issues related to low resolution modeling of soil moisture: Experience with the PLACE model.” Global and Plan. Change, Vol. 13, Nos. 1–4, pp. 161–181.

    Article  Google Scholar 

  • Boone, A., Habets, F., Noilhan, J., Clark, D., Dirmeyer, P., Fox, S., Gusev, Y., Haddeland, I., Koster, R., Lohmann, D., Mahanama, S., Mitchell, K., Nasonova, O., Niu, G.-Y., Pitman, A., Polcher, J., Shmakin, A.B., Tanaka, K., van den Hurk, B., Vérant, S., Verseghy, D., Viterbo, P., and Yang, Z.-L. (2004). “The Rhone-aggregation land surface scheme intercomparison project: An overview.” J. Climate, Vol. 17, No. 1, pp. 187–208.

    Article  Google Scholar 

  • Brooks R. H. and Corey, A. T. (1964). “Hydraulic properties in porous media.” Colorado State University, Fort Collins, Colorado, p. 27.

  • Chen, J. and Kumar, P. (2001). “Topographic influence of the seasonal and interannual variation of water and energy balance of basins in North America.” J. Climate, Vol. 14, No. 9, pp. 1989–2014.

    Article  Google Scholar 

  • Choi, H. I. and Liang, X.-Z. (2010). “Improved terrestrial hydrologic representation in mesoscale land surface models.” J. Hydrometeor, Vol. 11, No. 3, pp. 797–809.

    Article  Google Scholar 

  • Clapp, R. B. and Hornberger, G. M. (1978). “Empirical equations for some soil hydraulic properties.” Water Resour. Res., Vol. 14, No. 4, pp. 601–604.

    Article  Google Scholar 

  • Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T. R. (1984). “A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils.” Water Resour. Res., Vol. 20, No. 6, pp. 682–690.

    Article  Google Scholar 

  • Dai, Y., Zeng, X., and Dickinson, R. E. (2001). The Common Land Model (CLM): Technical documentation and user’s guide, http://climate.eas.gatech.edu/dickinson/.

  • Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich, M. G., Denning, A. S., Dirmeyer, P. A., Houser, P. R., Niu, G., Oleson, K. W., Schlosser, C. A., and Yang, Z.-L. (2003). “The common land model.” Bull. Amer. Meteor. Soc., Vol. 84, No. 8, pp. 1013–1023.

    Article  Google Scholar 

  • Elsenbeer, H., Cassel, D. K., and Castro, J. (1992). “Spatial analysis of soil hydraulic conductivity in a tropical rainforest catchment.” Water Resour. Res., Vol. 28, No. 12, pp. 3201–3214.

    Article  Google Scholar 

  • Entekhabi, D. and Eagleson, P. S. (1989). “Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale spatial variability.” J. Climate, Vol. 2, No. 8, pp. 816–831.

    Article  Google Scholar 

  • Liang, X.-Z., Choi, H. I., Kunkel, K. E., Dai, Y., Joseph, E., Wang, J. X. L., and Kumar, P. (2005). “Surface boundary conditions for mesoscale regional climate models.” Earth Interactions, Vol. 9, No. 18, No. 18, pp. 1–28.

    Article  Google Scholar 

  • Liang, X.-Z., Kunkel, K. E., and Samel, A. N. (2001). “Development of a regional climate model for U.S. Midwest applications. Part 1: Sensitivity to buffer zone treatment.” J. Climate., Vol. 14, No. 23, pp. 4363–4378.

    Article  Google Scholar 

  • Liang, X.-Z., Li, L., Kunkel, K. E., Ting, M., and Wang, J. X. L. (2004a). “Regional climate model simulation of U.S. precipitation during 1982-2002. Part 1: Annual cycle.” J. Climate, Vol. 17, No. 18, pp. 3510–3528.

    Article  Google Scholar 

  • Liang, X.-Z., Pan, J., Kunkel, K. E., Wang, J. X. L., Hunke, E. C., and Lipscomb, W. H. (2004b). “Coupling the CWRF with the CICE for Arctic climate applications.” Proc., Preprints of the First Joint WRF/MM5 User’s Workshop, June 22–25, Boulder, Colorado.

  • Mahrt, L. and Pan, H. (1984). “A two-layer model of soil hydrology.” Boundary-Layer Meteorology, Vol. 29, No. 1, pp. 1–20.

    Article  Google Scholar 

  • Miller, D. A. and White, R. A. (1998). “A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling.” Earth Interactions, Vol. 2, No. 2, pp. 1–26.

    Article  Google Scholar 

  • Nash, J. E. and Sutcliffe, J. V. (1970). “River flow forecasting through conceptual models part I — A discussion of principles.” Journal of Hydrology, Vol. 10, No. 3, pp. 282–290.

    Article  Google Scholar 

  • Niu, G.-Y. and Yang, Z.-L. (2003). “The versatile integrator of surface and atmosphere processes (VISA) Part II: Evaluation of three topography based runoff schemes.” Global Planet. Change, Vol. 38, Nos. 1–2, pp. 191–208.

    Article  Google Scholar 

  • Niu, G.-Y. and Yang, Z.-L. (2006). “Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale.” J. Hydrometeorol., Vol. 7, No. 5, pp. 937–952.

    Article  Google Scholar 

  • Niu, G.-Y., Yang, Z.-L., Dickinson, R. E., and Gulden, L. E. (2005). “A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in GCMs.” J. Geophys. Res., Vol. 110, D21106, doi:10.1029/2005JD006111.

    Article  Google Scholar 

  • Oleson, K. W., Niu, G. Y., Yang, Z.-L., Lawrence, D. M., Thornton, P. E., Lawrence, P. J., Stockli, R., Dickinson, R. E., Bonan, G. B., Levis, S., Dai, A., and Qian, T. (2008). “Improvements to the Community Land Model and their impact on the hydrological cycle.” J. Geophys. Res., Vol. 113, G01021, doi:10.1029/2007JG000563.

    Article  Google Scholar 

  • Sellers, P. J., Los, S. O., Tucker, C. J., Justice, C. O., Dazlich, D. A., Collatz, G. J., and Randall, D. A. (1996). “A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data.” J. Climate, Vol. 9, No. 4, pp. 706–737.

    Article  Google Scholar 

  • Sivapalan, M., Beven, K. J., and Wood, E. F. (1987). “On hydrologic similarity: 2. A scaled model of storm runoff production.” Water Resour. Res., Vol. 23, No. 12, pp. 2266–2278.

    Article  Google Scholar 

  • Stieglitz, M., Rind, D., Famiglietti, J., and Rosenzweig, C. (1997). “An efficient approach to modeling the topographic control of surface hydrology for regional modeling.” J. Climate, Vol. 10, No. 1, pp. 118–137.

    Article  Google Scholar 

  • Warrach, K., Stieglitz, M., Mengelkamp, H.-Theo, and Raschke, E. (2002). “Advantages of a topograpically controlled runoff simulation in a soil-vegetation-atmosphere transfer model.” J. Hydrometeorol., Vol. 3, No. 2, pp. 131–148.

    Article  Google Scholar 

  • Xue, Y., Sellers, P. J., Kinter III, J. L., and Shukla, J. (1991). “A simplified biosphere model for global climate studies.” J. Climate, Vol. 4, No. 3, pp. 345–364.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Il Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, E.S., Choi, H.I. & Kim, S. Implementation of a topographically controlled runoff scheme for land surface parameterizations in regional climate models. KSCE J Civ Eng 15, 1309–1318 (2011). https://doi.org/10.1007/s12205-011-1276-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-011-1276-8

Keywords

Navigation